Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Gels ; 10(4)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38667689

ABSTRACT

The ability of shape memory polymers to change shape upon external stimulation makes them exceedingly useful in various areas, from biomedical engineering to soft robotics. Especially, shape memory hydrogels (SMHs) are well-suited for biomedical applications due to their inherent biocompatibility, excellent shape morphing performance, tunable physiochemical properties, and responsiveness to a wide range of stimuli (e.g., thermal, chemical, electrical, light). This review provides an overview of the unique features of smart SMHs from their fundamental working mechanisms to types of SMHs classified on the basis of applied stimuli and highlights notable clinical applications. Moreover, the potential of SMHs for surgical, biomedical, and tissue engineering applications is discussed. Finally, this review summarizes the current challenges in synthesizing and fabricating reconfigurable hydrogel-based interfaces and outlines future directions for their potential in personalized medicine and clinical applications.

2.
Inorg Chem ; 60(7): 4397-4409, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33729794

ABSTRACT

Functionalization of metal-organic frameworks (MOFs) is critical in exploring their structural and chemical diversity for numerous potential applications. Herein, we report multiple approaches for the tandem postsynthetic modification (PSM) of various MOFs derived from Zr(IV), Al(III), and Zn(II). Our current work is based on our efforts to develop a wide range of MOF platforms with a dynamic functional nature that can be chemically switched via thermally triggered reversible Diels-Alder (DA) and hetero-Diels-Alder (HDA) ligations. Furan-tagged MOFs (furan-UiO-66-Zr) were conjugated with maleimide groups bearing dienophiles to prepare MOFs with a chemically switchable nature. As HDA pairs, phosphoryl dithioester-based moieties and cyclopentadiene (Cp)-grafted MOF (Cp-MIL-53-Al) were utilized to demonstrate the cleavage and rebonding of the linkages as a function of temperature. In addition to these strategies, the Michael addition reaction was also applied for the tandem PSM of IRMOF-3-Zn. Maleimide groups were postsynthetically introduced in the MOF lattice, which were further ligated with cysteine-based biomolecules via the thiol-maleimide Michael addition reaction. On the basis of the versatility of the herein presented chemistry, we expect that these approaches will help in designing a variety of sophisticated functional MOF materials addressing diverse applications.

3.
ACS Omega ; 5(26): 15850-15864, 2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32656406

ABSTRACT

Development of innovative methodologies to convert biomass ash into useful materials is essential to sustain the growing use of biomass for energy production. Herein, a simple chemical modification approach is employed to functionalize biomass fly ash (BFA) with 3-aminopropyltriethoxy silane (APTES) to develop an inexpensive and efficient adsorbent for water remediation. The amine-functionalized BFA (BFA-APTES) was fully characterized by employing a range of characterization techniques. Adsorption behavior of BFA-APTES was evaluated against two anionic dyes, namely, alizarin red S (ARS) and bromothymol blue (BTB). In the course of experimental data analysis, the computation tools of data fitting for linear and nonlinear form of Langmuir, Freundlich, and the modified Langmuir-Freundlich adsorption isotherms were used with the aid of Matlab R2019b. In order to highlight the misuse of linearization of adsorption models, the sum of the squares of residues (SSE) values obtained from nonlinear models are compared with R 2 values obtained from the linear regression. The accuracy of the data fitting was checked by the use of SSE as an error function instead of the coefficient of determination, R 2. The dye adsorption capacity of BFA-APTES was also compared with the nonfunctionalized BFA. The maximum adsorption capacities of BFA-APTES for ARS and BTB dye molecules were calculated to be around 13.42 and 15.44 mg/g, respectively. This value is approximately 2-3 times higher than the pristine BFA. A reasonable agreement between the calculated and experimental values of q e obtained from the nonlinear form of kinetic models verified the importance of using equations in their original form. The experimentally calculated thermodynamic parameters including molar standard Gibbs free energy (Δad G m 0) and molar standard enthalpy change (Δad H m 0) reflected that the process of adsorption of dye molecules on the BFA-APTES adsorbent was spontaneous and exothermic in nature. Moreover, the used BFA-APTES adsorbent could be regenerated and reused for several cycles with significant dye adsorption capacity. The remediation capability of the BFA-APTES adsorbent against ARS dye was also demonstrated by packing a small column filled with the BFA-APTES adsorbent and passing a solution of ARS through it. Overall, we provide a simple and scalable route to convert BFA into an efficient adsorbent for water remediation applications.

4.
RSC Adv ; 8(42): 23963-23972, 2018 Jun 27.
Article in English | MEDLINE | ID: mdl-35540296

ABSTRACT

We employed polymer functionalized silica gel as an adsorbent for the removal of Cr(vi) from water. The chains of 2-aminoethyl methacrylate hydrochloride (AEMA·HCl) polymer were grown from the surface of silica gel via surface-initiated conventional radical polymerization and the resulting hybrid material exhibited high affinity for chromium(vi). To investigate the adsorption behavior of Cr(vi) on diverse polymer based hybrid materials, the removal capacity of (SG-AEMH) was compared with our previously reported branched polyamine functionalized mesoporous silica (MS-PEI). The adsorption capacities of polymer based materials were also compared with their respective monolayer based platforms comprising a 3-aminopropyltriethoxysilane (APTES) functionalized silica gel (SG-APTES) and mesoporous silica (MS-APTES). The polymer based systems showed excellent Cr(vi) adsorption efficiencies compared to monolayer counterparts. The structural characteristics and surface modification of these adsorbents were examined by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). The experimental data were analyzed using the Langmuir and Freundlich models. Correlation coefficients were determined by analyzing each isotherm. The kinetic data of adsorption reactions were described by pseudo-first-order and pseudo-second-order equations. Thermodynamic parameters, i.e., change in the free energy (ΔG°), the enthalpy (ΔH°), and the entropy (ΔS°), were also evaluated. The synthesized hybrid materials exhibited a high adsorption capacity for chromium ions. Furthermore, they could be regenerated and recycled effectively.

5.
Chem Commun (Camb) ; 53(83): 11461-11464, 2017 Oct 17.
Article in English | MEDLINE | ID: mdl-28981129

ABSTRACT

We present the reversible Diels-Alder functionalization of metal organic frameworks (MOFs). Cyclopentadiene (Cp) functional MOFs are ligated with dienophiles to fabricate functional MOFs with a reprogrammable chemical nature. Our strategy thus constitutes an unprecedented concept for chemically dynamic MOFs able to be recoded.

6.
ACS Appl Mater Interfaces ; 6(6): 4408-17, 2014 Mar 26.
Article in English | MEDLINE | ID: mdl-24564236

ABSTRACT

A novel branched polyamine (polyethyleneimine, PEI) functionalized mesoporous silica (MS) adsorbent is developed via a facile "grafting-to" approach. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) spectroscopy verified the effective surface functionalization of MS with monolayer and polymer. The transmission electron microscopy (TEM) was employed to reveal the morphology of the fabricated materials. The adsorption behavior of the polyamine functionalized mesoporous silica (MS-PEI) is assessed against anionic dyes. The adsorbent characteristics of MS-PEI are compared with a monolayer platform comprising of 3-aminopropyltriethoxy silane (APTES) functionalized mesoporous silica (MS-APTES). The adsorption behavior of the MS-PEI and MS-APTES toward anionic dyes is further evaluated by studying the effect of adsorbent dosage, pH, contact time, and temperature. Langmuir and Freundlich isotherm models are employed to understand the adsorption mechanism. The obtained kinetic data support a pseudo-second-order adsorption behavior for both monolayer and polymer functionalized MS. The associated thermodynamic parameters (ΔG°, ΔH°, and ΔS°) reveal that the process of adsorption with MS-PEI is more spontaneous and energetically favored as compared to the adsorption with MS-APTES. Taken together, the novel adsorbent system derived from a combination of MS and branched polymer (MS-PEI) shows the higher absorption efficiency and capacity toward the anionic dyes than the monolayer based adsorbent (MS-APTES).


Subject(s)
Polyamines/chemistry , Silicon Dioxide/chemistry , Water Purification/instrumentation , Adsorption , Kinetics , Porosity , Water , Water Pollution, Chemical
SELECTION OF CITATIONS
SEARCH DETAIL
...