Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Phys Chem Lett ; 15(1): 165-172, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38150295

ABSTRACT

Developing facile and inexpensive methods for obtaining large-area two-dimensional semiconducting nanosheets is highly desirable for mass-scale device application. Here, we report a method for producing uniform and large-area films of a Ag-doped ZnO (AZO) nanosheet network via self-assembly at the hexane-water interface by controlling the solute/solvent ratio. The self-assembled film comprises of uniformly tiled nanosheets with size ∼1 µm and thicknesses∼60-100 nm. Using these films in a Pt/AZO/Ag structure, an atomic switch operation is realized. The switching mechanism is found to be governed by electrochemical metallization with nucleation as the rate-limiting step. Our results establish the protocol for large-scale device applications of AZO nanosheets for exploring advanced atomic switch-based neuromorphic systems.

2.
Nat Nanotechnol ; 18(12): 1430-1438, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37666941

ABSTRACT

Dirac materials are characterized by the emergence of massless quasiparticles in their low-energy excitation spectrum that obey the Dirac Hamiltonian. Known examples of Dirac materials are topological insulators, d-wave superconductors, graphene, and Weyl and Dirac semimetals, representing a striking range of fundamental properties with potential disruptive applications. However, none of the Dirac materials identified so far shows metallic character. Here, we present evidence for the formation of free-standing molybdenene, a two-dimensional material composed of only Mo atoms. Using MoS2 as a precursor, we induced electric-field-assisted molybdenene growth under microwave irradiation. We observe the formation of millimetre-long whiskers following screw-dislocation growth, consisting of weakly bonded molybdenene sheets, which, upon exfoliation, show metallic character, with an electrical conductivity of ~940 S m-1. Molybdenene when hybridized with two-dimensional h-BN or MoS2, fetch tunable optical and electronic properties. As a proof of principle, we also demonstrate applications of molybdenene as a surface-enhanced Raman spectroscopy platform for molecular sensing, as a substrate for electron imaging and as a scanning probe microscope cantilever.

3.
Chemphyschem ; 24(24): e202300447, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-37732481

ABSTRACT

Beyond a critical doping level, Ag-2D TiO2 sheets (ATO) are deemed to be a flexible transparent conductor, useful for visible-range functional photonic/optoelectronic devices/sensors, sunlight-sensitive catalysis, and light-activated resistive switching. Due to the lack of control of surface energy which often leads to the formation of structural defects and even dimensionality crossover (2D to 0D) of materials during doping reaction, it is challenging to obtain ATO with a controlled doping level. Gauging the urgency, therefore we report the surface energy-controlled synthesis of ATO employing liquid phase exfoliation of TiO2 and subsequent hydrothermal Ag-doping in the presence of Hexamethylenetetramine (HMTA). Electron microscopy and atomic force microscopy reveal ATO sheets with large lateral dimensions. 6-fold, 4-fold, and strain-mediated crystallographic phases of 2D ATO have been revealed by high-resolution electron imaging. Successful tuning of the band gap down to ~2 eV with Ag doping up to ~10 % is obtained. Synthesized 2D ATO have been investigated for their electrical, optical, optoelectronic, photoluminescence, and ferromagnetic behaviour. Visible light-sensitive thermally/structurally robust semiconductor/conductor via tuneable doping will pave the way for their flexible as well as wearable device applications. Self-healing effect of AFM tip-generated mechanical stress has also been demonstrated.

4.
Soft Matter ; 19(8): 1513-1522, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36727296

ABSTRACT

Understanding and control of molecular alignment at the nanoscale in self-assembled supramolecular structures is a prerequisite for the subsequent exploitation of molecules in functional devices. Here, we have clarified the surface-pressure induced molecular nanoarchitectures in a monolayer of a heterocoronene-based discotic liquid crystal (DLC) at air-water and air-solid interfaces using surface manometry, real-time Brewster angle microscopy, and real-space atomic force microscopy (AFM). Chloroform-spread DLCs at a concentration of ∼108 µM exhibit floating domains at the air-water interface comprising small aggregates of edge-on stacked molecules interacting via peripheral alkyl chains. Detailed analysis of surface manometry and relaxation measurements reveal that, upon compression, these domains coalesce to form a coherent monolayer which then undergoes irreversible structural transformations via mechanisms such as monolayer loss due to desorption and localized nucleation of defects. AFM images of the films transferred on a hydrophilic substrate reveal that with increasing surface-pressure, the nanoscale structure of the monolayer transforms from randomly oriented nanowires to tightly-packed nanowire domains, and finally to fragmented wire segments which diffuse locally above the film. These results provide a facile method for the preparation of compact, two-dimensional films of ambipolar DLC molecules with a tunable nanoarchitecture which will be crucial for their applications in nanoscale electronic devices.

5.
Adv Mater ; 30(6)2018 Feb.
Article in English | MEDLINE | ID: mdl-29314325

ABSTRACT

Controlling movements of electrons and holes is the key task in developing today's highly sophisticated information society. As transistors reach their physical limits, the semiconductor industry is seeking the next alternative to sustain its economy and to unfold a new era of human civilization. In this context, a completely new information token, i.e., ions instead of electrons, is promising. The current trend in solid-state nanoionics for applications in energy storage, sensing, and brain-type information processing, requires the ability to control the properties of matter at the ultimate atomic scale. Here, a conceptually novel nanoarchitectonic strategy is proposed for controlling the number of dopant atoms in a solid electrolyte to obtain discrete electrical properties. Using α-Ag2+δ S nanodots with a finite number of nonstoichiometry excess dopants as a model system, a theory matched with experiments is presented that reveals the role of physical parameters, namely, the separation between electrochemical energy levels and the cohesive energy, underlying atomic-scale manipulation of dopants in nanodots. This strategy can be applied to different nanoscale materials as their properties strongly depend on the number of doping atoms/ions, and has the potential to create a new paradigm based on controlled single atom/ion transfer.

6.
Nanotechnology ; 26(14): 145702, 2015 Apr 10.
Article in English | MEDLINE | ID: mdl-25772614

ABSTRACT

Resistive random access memories (ReRAMs) are promising next-generation memory devices. Observation of the conductive filaments formed in ReRAMs is essential in understanding their operating mechanisms and their expected ultimate performance. Finding the position of the conductive filament is the key process in the preparation of samples for cross-sectional transmission electron microscopy (TEM) imaging. Here, we propose a method for locating the position of conductive filaments hidden under top electrodes. Atomic force microscopy imaging with a conductive tip detects the current flowing through a conductive filament from the bottom electrode, which reaches its maximum at a position that is above the conductive filament. This is achieved by properly biasing a top electrode, a bottom electrode and the conductive tip. This technique was applied to Cu/Ta2O5/Pt atomic switches, revealing the formation of a single Cu filament in a device, although the device had a large area of 5 × 5 µm(2). Change in filament size was clearly observed depending on the compliance current used in the set process. It was also found from the TEM observation that the cross-sectional shape of the formed filament varies considerably, which is attributable to different Cu nuclei growth mechanisms.

7.
Nat Mater ; 11(6): 530-5, 2012 Apr 29.
Article in English | MEDLINE | ID: mdl-22543299

ABSTRACT

Electrochemical equilibrium and the transfer of mass and charge through interfaces at the atomic scale are of fundamental importance for the microscopic understanding of elementary physicochemical processes. Approaching atomic dimensions, phase instabilities and instrumentation limits restrict the resolution. Here we show an ultimate lateral, mass and charge resolution during electrochemical Ag phase formation at the surface of RbAg(4)I(5) superionic conductor thin films. We found that a small amount of electron donors in the solid electrolyte enables scanning tunnelling microscope measurements and atomically resolved imaging. We demonstrate that Ag critical nucleus formation is rate limiting. The Gibbs energy of this process takes discrete values and the number of atoms of the critical nucleus remains constant over a large range of applied potentials. Our approach is crucial to elucidate the mechanism of atomic switches and highlights the possibility of extending this method to a variety of other electrochemical systems.

8.
Nanotechnology ; 22(23): 235201, 2011 Jun 10.
Article in English | MEDLINE | ID: mdl-21483044

ABSTRACT

The switching time of a Cu(2)S-based gap-type atomic switch is investigated as a function of temperature, bias voltage, and initial off-resistance. The gap-type atomic switch is realized using a scanning tunneling microscope (STM), in which the formation and annihilation of a Cu-atom bridge in the vacuum gap between the Cu(2)S electrode and the Pt tip of the STM are controlled by a solid-electrochemical reaction. Increasing the temperature decreases the switching time exponentially with an activation energy of about 1.38 eV. Increasing the bias voltage also shortens the switching time exponentially, exhibiting a greater exponent for the lower bias than for the higher bias. Furthermore, faster switching has been achieved by decreasing the initial off-resistance between the Cu(2)S electrode and STM tip. On the basis of these results, we suggest that, in addition to the chemical reaction, the electric field in the vacuum gap plays a significant role in the operation of a gap-type atomic switch. This investigation advances our understanding of the operating mechanism of an atomic switch, which is a new concept for future electronic devices.

9.
Sci Technol Adv Mater ; 12(1): 013003, 2011 Feb.
Article in English | MEDLINE | ID: mdl-27877376

ABSTRACT

Atomic switches are nanoionic devices that control the diffusion of metal cations and their reduction/oxidation processes in the switching operation to form/annihilate a metal atomic bridge, which is a conductive path between two electrodes in the on-state. In contrast to conventional semiconductor devices, atomic switches can provide a highly conductive channel even if their size is of nanometer order. In addition to their small size and low on-resistance, their nonvolatility has enabled the development of new types of programmable devices, which may achieve all the required functions on a single chip. Three-terminal atomic switches have also been developed, in which the formation and annihilation of a metal atomic bridge between a source electrode and a drain electrode are controlled by a third (gate) electrode. Three-terminal atomic switches are expected to enhance the development of new types of logic circuits, such as nonvolatile logic. The recent development of atomic switches that use a metal oxide as the ionic conductive material has enabled the integration of atomic switches with complementary metal-oxide-semiconductor (CMOS) devices, which will facilitate the commercialization of atomic switches. The novel characteristics of atomic switches, such as their learning and photosensing abilities, are also introduced in the latter part of this review.

10.
J Phys Chem B ; 113(12): 3669-75, 2009 Mar 26.
Article in English | MEDLINE | ID: mdl-19673129

ABSTRACT

We have studied the mechanical properties of films of a novel ionic discogen, pyridinium tethered with hexaalkoxytriphenylene (PyTp) and its complex with DNA (PyTp-DNA) using atomic force microscope (AFM). The PyTp and PyTp-DNA complex monolayer films were first formed at air-water interface and then transferred onto silicon substrates by Langmuir-Blodgett (LB) technique. For the mechanical properties, particularly to obtain elastic modulus, we have carried out nanoindentation measurements on the LB films of PyTp and also PyTp-DNA complex. The load versus indentation curves from the nanoindentation measurements were analyzed quantitatively using Hertz model. Our analysis yields Young's modulus values of 54 and 160 MPa for the PyTp and PyTp-DNA complex films, respectively. In addition, the LB films were imaged in the tapping mode AFM to obtain topography and phase images simultaneously. The energy dissipation maps were constructed from the phase images to determine qualitatively the variation in stiffness on the film surfaces. We find that the complex film exhibits a nonuniform surface with varying stiffness while the pure film exhibits a uniform surface.


Subject(s)
DNA/chemistry , Membranes, Artificial , Organometallic Compounds/chemistry , Pyridinium Compounds/chemistry , Animals , Chrysenes/chemistry , Male , Microscopy, Atomic Force , Salmon , Surface Properties , Testis
11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(2 Pt 1): 021606, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18850845

ABSTRACT

We have studied the electrical conductivity in monolayer films of an ionic disk-shaped liquid-crystal molecule, pyridinium tethered with hexaalkoxytriphenylene (PyTp), and its complex with DNA by current-sensing atomic force microscopy (CS-AFM). The pure PyTp and PyTp-DNA complex monolayer films were first formed at the air-water interface and then transferred onto conducting substrates by the Langmuir-Blodgett (LB) technique to study the nanoscale electron transport through these films. The conductive tip of CS-AFM, the LB film, and the metal substrate form a nanoscopic metal-LB film-metal (M-LB-M) junction. We have measured the current-voltage (I-V) characteristics for the M-LB-M junction using CS-AFM and have analyzed the data quantitatively. We find that the I-V curves fit well to the Fowler-Nordheim (FN) model, suggesting electron tunneling to be a possible mechanism for electron transport in our system. Further, analysis of the I-V curves based on the FN model yields the barrier heights of PyTp-DNA complex and pure PyTp films. Electron transport studies of films of ionic disk-shaped liquid-crystal molecules and their complex with DNA are important from the point of view of their applications in organic electronics.

12.
J Phys Chem B ; 112(10): 2930-6, 2008 Mar 13.
Article in English | MEDLINE | ID: mdl-18281974

ABSTRACT

We have studied films of an ionic discogenic (discotic mesogenic) molecule (pyridinium salt tethered with hexaalkoxytriphenylene (PyTp)) and DNA complex at air-water (A-W) and air-solid interfaces. We have formed an PyTp monolayer on an aqueous subphase containing a small amount of DNA to obtain a PyTp-DNA complex at the A-W interface. Compared to the pure PyTp monolayer, the PyTp-DNA complex monolayer exhibits a higher collapse pressure and lower limiting area, indicating condensation and better stability. A Brewster angle microscope was used for in situ observation of the morphology of the film at the A-W interface. The PyTp-DNA complex films on silicon wafers were prepared using the Langmuir-Blodgett (LB) technique. We find that several tens of layers of the PyTp-DNA complex monolayer can be transferred with good efficiency. Fourier transform infrared spectroscopy studies confirm the presence of DNA in the LB films of the PyTp-DNA complex. Nanoindentation measurements using atomic force microscope reveal that the PyTp-DNA complex films are about two times harder as compared to the pure PyTp films.


Subject(s)
Air , DNA/chemistry , Water/chemistry , DNA/ultrastructure , Elasticity , Microscopy, Atomic Force , Phase Transition , Spectroscopy, Fourier Transform Infrared , Surface Properties
13.
J Phys Chem B ; 111(38): 11157-61, 2007 Sep 27.
Article in English | MEDLINE | ID: mdl-17760436

ABSTRACT

Discotic molecules are known to form highly anisotropic structures at the air-water (A-W) interface. We have studied two novel ionic discotic mesogenic molecules, viz., pyridinium tethered with hexaalkoxytriphenylene with bromide counterion (Py-Tp) and imidazolium tethered with hexaalkoxytriphenylene with bromide counterion (Im-Tp) at A-W and air-solid interfaces. The monolayer phases were investigated at the A-W interface employing surface manometry and Brewster angle microscopy techniques. They indicate a uniform monolayer phase which shows negligible hysteresis on expanding and compressing. Also, in both the systems the collapsed state completely reverts to the monolayer state. These monolayer films transferred at different surface pressures by Langmuir-Blodgett technique were studied by employing atomic force microscopy. The topographies of these films transferred at the low and high surface pressure region of the isotherm indicate a transformation of the monolayer from face-on to edge-on structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...