Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Probiotics Antimicrob Proteins ; 15(3): 614-629, 2023 06.
Article in English | MEDLINE | ID: mdl-34825308

ABSTRACT

This aim of the study was to isolate and screen potential probiotics from Dioscorea villosa leaves. The potential isolate Y4 was obtained from the Dioscorea villosa leaves, and its ability to grow in a medium containing high NaCl concentrations (2-10%) indicated its negative hemolytic activity. Furthermore, Y4 demonstrated inhibitory activity against human pathogens, such as Klebsiella pneumonia, Staphylococcus aureus, Citrobacter koseri, and Vibrio cholerae, as well as towards a plant pathogen isolate OR-2 (obtained from Citrus sinensis). Some biologically important functional groups of Y4 metabolites, such as sulfoxide; aliphatic ether; 1, 2, 3-trisubstituted, tertiary alcohol: vinyl ether; aromatic amine; carboxylic acid; nitro compound; alkene mono-substituted; and alcohol, were identified through FTIR analysis. The 16S rRNA sequencing and subsequent phylogenetic tree analysis indicated that Y4 and OR-2 are the closest neighbors to Kocuria flava (GenBank accession no. MT773277) and Pantoea dispersa (GenBank accession no. MT766308), respectively. The potential isolate Y4 was found to exhibit adhesion, auto-aggregation, co-aggregation, and weak biofilm activity. It also exhibited a high level of antimicrobial activity and antibiotic susceptibility. The safety of K. flava Y4 isolate, which is proposed to be a probiotic, was evaluated through acute oral toxicity test and biogenic amine production test. Moreover, the preservation potential of isolate Y4 was assessed through application on fruits under different temperatures. Thus, our results confirmed that Kocuria flava Y4 is a prospective probiotic and could also be used for the preservation of fruits.


Subject(s)
Dioscorea , Probiotics , Humans , Dioscorea/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Prospective Studies , Probiotics/pharmacology
2.
ACS Omega ; 7(26): 22531-22550, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35811900

ABSTRACT

Glioblastoma (GBM) is the most devastating and frequent type of primary brain tumor with high morbidity and mortality. Despite the use of surgical resection followed by radio- and chemotherapy as standard therapy, the progression of GBM remains dismal with a median overall survival of <15 months. GBM embodies a populace of cancer stem cells (GSCs) that is associated with tumor initiation, invasion, therapeutic resistance, and post-treatment reoccurrence. However, understanding the potential mechanisms of stemness and their candidate biomarkers remains limited. Hence in this investigation, we aimed to illuminate potential candidate hub genes and key pathways associated with the pathogenesis of GSC in the development of GBM. The integrated analysis discovered differentially expressed genes (DEGs) between the brain cancer tissues (GBM and GSC) and normal brain tissues. Multiple approaches, including gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, were employed to functionally annotate the DEGs and visualize them through the R program. The significant hub genes were identified through the protein-protein interaction network, Venn diagram analysis, and survival analysis. We observed that the upregulated DEGs were prominently involved in the ECM-receptor interaction pathway. The downregulated genes were mainly associated with the axon guidance pathway. Five significant hub genes (CTNNB1, ITGB1, TNC, EGFR, and SHOX2) were screened out through multiple analyses. GO and KEGG analyses of hub genes uncovered that these genes were primarily enriched in disease-associated pathways such as the inhibition of apoptosis and the DNA damage repair mechanism, activation of the cell cycle, EMT (epithelial-mesenchymal transition), hormone AR (androgen receptor), hormone ER (estrogen receptor), PI3K/AKT (phosphatidylinositol 3-kinase and AKT), RTK (receptor tyrosine kinase), and TSC/mTOR (tuberous sclerosis complex and mammalian target of rapamycin). Consequently, the epigenetic regulatory network disclosed that hub genes played a vital role in the progression of GBM. Finally, candidate drugs were predicted that can be used as possible drugs to treat GBM patients. Overall, our investigation offered five hub genes (CTNNB1, ITGB1, TNC, EGFR, and SHOX2) that could be used as precise diagnostic and prognostic candidate biomarkers of GBM and might be used as personalized therapeutic targets to obstruct gliomagenesis.

3.
PLoS One ; 16(10): e0255803, 2021.
Article in English | MEDLINE | ID: mdl-34613998

ABSTRACT

Octamer-binding transcription factor 4 (Oct4) is a core regulator in the retention of stemness, invasive, and self-renewal properties in glioma initiating cells (GSCs) and its overexpression inhibits the differentiation of glioma cells promoting tumor cell proliferation. The Pit-Oct-Unc (POU) domain comprising POU-specific domain (POUS) and POU-type homeodomain (POUHD) subdomains is the most critical part of the Oct4 for the generation of induced pluripotent stem cells from somatic cells that lead to tumor initiation, invasion, posttreatment relapse, and therapeutic resistance. Therefore, the present investigation hunts for natural product inhibitors (NPIs) against the POUHD domain of Oct4 by employing receptor-based virtual screening (RBVS) followed by binding free energy calculation and molecular dynamics simulation (MDS). RBVS provided 13 compounds with acceptable ranges of pharmacokinetic properties and good docking scores having key interactions with the POUHD domain. More Specifically, conformational and interaction stability analysis of 13 compounds through MDS unveiled two compounds ZINC02145000 and ZINC32124203 which stabilized the backbone of protein even in the presence of linker and POUS domain. Additionally, ZINC02145000 and ZINC32124203 exhibited stable and strong interactions with key residues W277, R242, and R234 of the POUHD domain even in dynamic conditions. Interestingly, ZINC02145000 and ZINC32124203 established communication not only with the POUHD domain but also with the POUS domain indicating their incredible potency toward thwarting the function of Oct4. ZINC02145000 and ZINC32124203 also reduced the flexibility and escalated the correlations between the amino acid residues of Oct4 evidenced by PCA and DCCM analysis. Finally, our examination proposed two NPIs that can impede the Oct4 function and may help to improve overall survival, diminish tumor relapse, and achieve a cure not only in deadly disease GBM but also in other cancers with minimal side effects.


Subject(s)
Biological Products/pharmacology , Glioma/drug therapy , Neoplastic Stem Cells/drug effects , Octamer Transcription Factor-3/antagonists & inhibitors , Transcription Factors/antagonists & inhibitors , Computer Simulation , Glioma/metabolism , Humans , Molecular Dynamics Simulation , Neoplastic Stem Cells/metabolism , Protein Domains/drug effects
4.
J Cell Biochem ; 120(6): 9063-9081, 2019 06.
Article in English | MEDLINE | ID: mdl-30506751

ABSTRACT

Protease inhibitors (PIs) are crucial drugs in highly active antiretroviral therapy for human immunodeficiency virus-1 (HIV-1) infections. However, resistance owing to mutations challenge the long-term efficacy in the medication of HIV-1-infected individuals. Lopinavir (LPV) and darunavir (DRV), two second-generation drugs are the most potent among PIs, hustling the drug resistance when mutations occur in the active and nonactive site of the protease (PR). Herein, we strive for compounds that can stifle the function of wild-type (WT) HIV-1 PR along with four major single mutants (I54M, V82T, I84V, and L90M) instigating resistance to the PIs using in silico approach. Six common compounds are retrieved from six databases using combined pharmacophore-based and structure-based virtual screening methodology. LPV and DRV are docked and the binding free energy is calculated to set the cut-off value for selecting compounds. Further, to gain insight into the stability of the complexes the molecular dynamics simulation (MDS) is carried out, which uncovers two lead molecules namely NCI-524545 and ZINC12866729. Both the lead molecules connect with WT and mutant HIV-1 PRs through strong and stable hydrogen bond interactions when compared with LPV and DRV throughout the trajectory analysis. Interestingly, NCI-524545 and ZINC12866729 exhibit direct interactions with I50/50' by replacing the conserved water molecule as evidenced by MDS, which indicates the credible potency of these compounds. Hence, we concluded that NCI-524545 and ZINC12866729 have great puissant to restrain the role of drug resistance HIV-1 PR variants, which can also show better activity through in vivo and in vitro conditions.


Subject(s)
Darunavir/chemistry , Darunavir/pharmacology , HIV-1/enzymology , Lopinavir/chemistry , Lopinavir/pharmacology , Crystallography, X-Ray , Drug Discovery , HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/pharmacology , Humans , Molecular Dynamics Simulation
5.
Bioorg Chem ; 81: 340-349, 2018 12.
Article in English | MEDLINE | ID: mdl-30189414

ABSTRACT

Synthesis of natural products has speeded up drug discovery process by minimizing the time for their purification from natural source. Several diseases like Alzheimer's disease (AD) demand exploring multi targeted drug candidates, and for the first time we report the multi AD target inhibitory potential of synthesized dihydroactinidiolide (DA). Though the activity of DA in several solvent extracts have been proved to possess free radical scavenging, anti bacterial and anti cancer activities, its neuroprotective efficacy has not been evidenced yet. Hence DA was successfully synthesized from ß-ionone using facile two-step oxidation method. It showed potent acetylcholinesterase (AChE) inhibition with half maximal inhibitory concentration (IC50) 34.03 nM, which was further supported by molecular docking results showing strong H bonding with some of the active site residues such as GLY117, GLY119 and SER200 of AChE. Further it displayed DPPH and (.NO) scavenging activity with IC50 value 50 nM and metal chelating activity with IC50 >270 nM. Besides, it significantly prevented amyloid ß25-35 self-aggregation and promoted its disaggregation at 270 nM. It did not show cytotoxic effect towards Neuro2a (N2a) cells up to 24 h at 50 and 270 nM while it significantly increased viability of amyloid ß25-35 treated N2a cells through ROS generation at both the concentrations. Cytotoxicity profile of DA against human PBMC was quite impressive. Hemolysis studies also revealed very low hemolysis i.e. minimum 2.35 to maximum 5.61%. It also had suitable ADME properties which proved its druglikeness. The current findings demand for further in vitro and in vivo studies to develop DA as a multi target lead against AD.


Subject(s)
Amyloid beta-Peptides/toxicity , Benzofurans/pharmacology , Cholinesterase Inhibitors/pharmacology , Free Radical Scavengers/pharmacology , Neuroprotective Agents/pharmacology , Peptide Fragments/toxicity , Acetylcholinesterase/chemistry , Animals , Benzofurans/chemical synthesis , Benzofurans/pharmacokinetics , Benzofurans/toxicity , Catalytic Domain , Cell Line, Tumor , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/pharmacokinetics , Cholinesterase Inhibitors/toxicity , Free Radical Scavengers/chemical synthesis , Free Radical Scavengers/pharmacokinetics , Free Radical Scavengers/toxicity , Hemolysis/drug effects , Humans , Mice , Molecular Docking Simulation , Molecular Dynamics Simulation , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/pharmacokinetics , Neuroprotective Agents/toxicity , Protein Multimerization/drug effects , Reactive Oxygen Species/metabolism
6.
J Mol Graph Model ; 81: 175-183, 2018 05.
Article in English | MEDLINE | ID: mdl-29574323

ABSTRACT

In eukaryotes, the serine/threonine kinases (STKs) belonging to cyclin-dependent protein kinases (CDKs) play significant role in control of cell division and curb transcription in response to several extra and intra-cellular signals indispensable for enzymatic activity. The zebrafish cyclin-dependent protein kinase-like 1 protein (zCDKL1) shares a high degree of sequence and structural similarity with mammalian orthologs and express in brain, ovary, testis, and low levels in other tissues. Regardless of its importance in the developmental process, the structure, function and mode of ATP recognition have not been investigated yet due to lack of experimental data. Henceforth, to gain atomistic insights in to the structural dynamics and mode of ATP binding, a series of computational techniques involving theoretical modeling, docking, molecular dynamics (MD) simulations and MM/PBSA binding free energies were employed. The modeled bi-lobed zCDKL1 shares a high degree of secondary structure topology with human orthologs where ATP prefers to lie in the central cavity of the bi-lobed catalytic domain enclosed by strong hydrogen bonding, electrostatic and hydrophobic contacts. Long range MD simulation portrayed that catalytic domain of zCDKL1 to be highly rigid in nature as compared to the complex (zCDKL1-ATP) form. Comparative analysis with its orthologs revealed that conserved amino acids i.e., Ile10, Gly11, Glu12, Val18, Arg31, Phe80, Glu 130, Cys143 and Asp144 were crucial for ATP binding mechanism, which needs further investigation for legitimacy. MM/PBSA method revealed that van der Waals, electrostatic and polar solvation energy mostly contributes towards negative free energy. The implications of ATP binding mechanism inferred through these structural bioinformatics approaches will help in understanding the catalytic mechanisms of important STKs in eukaryotic system.


Subject(s)
Adenosine Triphosphate/chemistry , Cyclin-Dependent Kinases/chemistry , Molecular Dynamics Simulation , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Animals , Catalytic Domain , Cyclin-Dependent Kinases/metabolism , Hydrogen Bonding , Molecular Docking Simulation , Protein Binding , Protein Conformation , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...