Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 246: 125578, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37379943

ABSTRACT

Here we present the simple green synthesis of chitosan­silver nanocomposite (CS-Ag NC) by employing kiwi fruit juice as reducing agent. The structure, morphology, and composition of CS-Ag NC were determined using characterization techniques such as XRD, SEM-EDX, UV-visible, FT-IR, particle size, and zeta potential. The prepared CS-Ag nanocomposite was effectively used as catalyst in the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of NaBH4 as reductant, in aqueous medium at room temperature. The toxicity of CS-Ag NC was assessed on Normal (L929) cell line, Lung cancer (A549) cell line and Oral cancer (KB-3-1) cell line and their respective IC50values observed were 83.52 µg/mL, 66.74 µg/mL and 75.11 µg/mL. The CS-Ag NC displayed significant cytotoxic activity and the cell viability percentage for normal, lung and oral cancer cell lines were found to be 42.87 ± 0.0060, 31.28 ± 0.0045 and 35.90 ± 0.0065 respectively. Stronger cell migration was exemplified by CS-Ag NC and the percentage of wound closure (97.92%) was substantially identical to that of the standard drug ascorbic acid (99.27%). Further CS-Ag nanocomposite was subjected for in vitro antioxidant activity.


Subject(s)
Chitosan , Metal Nanoparticles , Mouth Neoplasms , Nanocomposites , Humans , Antioxidants/pharmacology , Chitosan/chemistry , Silver/chemistry , Spectroscopy, Fourier Transform Infrared , Wound Healing , Nanocomposites/chemistry , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...