Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 269(Pt 2): 132085, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723836

ABSTRACT

Non-biodegradable polyolefin based plastic mulch residues in agricultural fields after the end of a crop cycle have raised several concerns as an environmental pollutant in recent years. This study explores the potential of Poly (lactic acid) (PLA) and Poly (butylene adipate-co-terephthalate) (PBAT) based compostable films reactively blended with compatibilizers and chain extenders as a promising solution to environmental challenges associated with traditional plastic mulch films. Epoxidized soybean oil (ESO) and Epoxy-functionalized styrene acrylic copolymer (ESA) have been used as reactive compatibilizers and chain extenders respectively. In-depth analysis of the mechanical, thermal, and barrier properties of the developed films, revealed that the PLA/PBAT blend films at 75:25 weight ratio in the presence of 5 phr ESO and 0.5 phr ESA exhibit improved performance characteristics for application as mulch films. Furthermore, the films were subjected to 360-h UV exposure to gauge their stability under prolonged exposure, specifically investigating changes in the carbonyl index. Additionally, a rigorous real-time field trial of the mulch films spanning eight months with various crops was carried out to understand their performance in practical agricultural settings. The study also involved the identification of microorganisms responsible for the degradation of the developed mulch films employing 16S rRNA sequencing.


Subject(s)
Agriculture , Biodegradation, Environmental , Polyesters , Soil Microbiology , Polyesters/chemistry , Agriculture/methods , Microbiota , Soil/chemistry , Soybean Oil
2.
Phys Chem Chem Phys ; 23(39): 22804-22816, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34610057

ABSTRACT

Hybrid organic-inorganic nanocomposites employ metal oxides to improve the charge transport properties and stability of the conjugated polymer. They are considered one of the most interesting candidates for optoelectronic applications. This article presents a detailed investigation on the influence of defective electronic states of MgO nanoparticles on the photophysical properties and photostability of a conjugated polymer, poly[2-methoxy-5-(2-ethylhyxyloxy)-1,4-phenylene vinylene] (MEH-PPV). Since MgO is an insulator (Eg - 7.8 eV), defect states were induced to improve the delocalization of electrons and conductivity. These defect-induced MgO nanoparticles accounted for the enhanced absorbance in the hybrid polymer nanocomposites. The nanocomposites demonstrated photoluminescence (PL) quenching owing to the transfer of electrons from MEH-PPV to the defective energy levels (oxygen vacancies) of MgO. The photoinduced electron transfer was confirmed through solvent and temperature-dependent PL analysis, and also through electrochemical analysis. The MEH-PPV/MgO nanocomposite displayed 23% PL quantum efficiency. An improvement in photostability was observed due to the reduction in the polymer chain defects, prevention of oxygen diffusion by MgO nanoparticles, inhibition of moisture intervention by improving the hydrophobicity of nanocomposites, and most importantly, transfer of electrons from the polymer to oxygen vacancies, which prohibited superoxide formation. Hence, this work validates the role of oxygen vacancies of MgO nanoparticles in the PL quenching and photostability enhancement of MEH-PPV.

3.
Phys Chem Chem Phys ; 23(43): 24944, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34708845

ABSTRACT

Correction for 'Role of defective states in MgO nanoparticles on the photophysical properties and photostability of MEH-PPV/MgO nanocomposite' by Sangeetha Ashok Kumar et al., Phys. Chem. Chem. Phys., 2021, 23, 22804-22816, DOI: 10.1039/d1cp03035c.

4.
Waste Manag Res ; 38(3): 312-321, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31918651

ABSTRACT

The recycling of polyvinyl chloride (PVC) recovered from the plastic insulations in wires and cables is a rising concern in the current situation due to its hazardous behaviour during recycling. Similarly, high-impact polystyrene (HIPS) and acrylonitrile butadiene styrene (ABS) used in the structural components of electrical and electronic equipment are also generated in large quantities. In the current work, three agendas were fixed: (a) to determine the effect of recycled polymeric material (HIPS and ABS) recovered from different sources on the mechanical property of the polymeric blends; (b) to formulate a high-impact strength blend; and (c) to deduce a mechanism for improved impact strength. The mechanical characterizations were conducted on the entire blends formulated. Among them, the recycled blend composed of recycled PVC (r-PVC) and recycled ABS (r-ABS) (segregated from uninterrupted power supply housing) and recycled HIPS (r-HIPS; collected from television housing) was confined for further physio-mechanical and thermal analysis. Besides, the r-PVC/r-ABS systems had shown better mechanical properties than r-PVC/r-HIPS systems in similar composition. The impact strength of blend r-PVC/r-ABS (70:30) was found to be 250 J/m, which was 200% more than the blend r-PVC/r-ABS (0:100). The compatibility and non-compatibility in PVC/ABS and PVC/HIPS blends respectively were explained with thermal, mechanical and morphological characterizations. Furthermore, a plausible cross-linking mechanism is developed between ABS and PVC, which controls the release of chlorine atoms into the environment.


Subject(s)
Acrylonitrile , Electronic Waste , Hazardous Waste , Plastics , Recycling
5.
Int J Biol Macromol ; 122: 137-148, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30342131

ABSTRACT

Currently, diabetes mellitus (DM) accelerated diabetic foot ulcer (DFU) remains vivacious health problem related with delayed healing and high amputation rates which leads to enormous clinical obligation. Keeping in view of the foregoing, researchers have been made in their efforts to develop novel materials which accelerate delayed wound healing in the diabetic patient and reduce the adversative influences of DFUs. The most prominent materials used for the wound healing application have biocompatibility, low cytotoxicity, excellent biodegradable properties, and antimicrobial activity properties. Utilization of nanoparticles has emerged as a protruding scientific and technological revolution in controlling DFUs. Biopolymers in combination with bioactive nanoparticles having antimicrobial, antibacterial, and anti-inflammatory properties have great potential in wound care to enhance the healing process of diabetic wound infectious. Combination of antibacterial nanoparticles like silver nanoparticles (AgNPs), gold nanoparticles (AuNPs), copper nanoparticles (CuNPs) etc. with polymeric matrix could efficiently inhibit bacterial growth and at the same time fastens the healing process of a wound. This review briefed the recent development of different natural polymers and antibacterial nanoparticles to mitigate the diabetes mellitus based DFU.


Subject(s)
Biopolymers/chemistry , Biopolymers/pharmacology , Diabetes Mellitus/physiopathology , Metal Nanoparticles/chemistry , Wound Healing/drug effects , Animals , Humans
6.
Waste Manag Res ; 36(6): 495-504, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29726308

ABSTRACT

The current investigation deals with the recycling possibilities of poly(vinyl chloride) and poly(methyl methacrylate) in the presence of acrylonitrile butadiene rubber. Recycled blends of poly(vinyl chloride)/poly(methyl methacrylate) are successfully formed from the plastic constituents, those are recovered from waste computer products. However, lower impact performance of the blend and lower stability of the poly(vinyl chloride) phase in the recycled blend restricts its further usage in industrial purposes. Therefore, effective utilisation acrylonitrile butadiene rubber in a recycled blend was considered for improving mechanical and thermal performance. Incorporation of acrylonitrile butadiene rubber resulted in the improvement in impact performance as well as elongation-at-break of the recycled blend. The optimum impact performance was found in the blend with 9 wt% acrylonitrile butadiene rubber, which shows 363% of enhancement as compared with its parent blend. Moreover, incorporated acrylonitrile butadiene rubber also stabilises the poly(vinyl chloride) phase present in the recycled blend, similarly Fourier transform infrared spectroscopy studies indicate the interactions of various functionalities present in the recycled blend and acrylonitrile butadiene rubber. In addition to this, thermogravimetric analysis indicates the improvement in the thermal stability of the recycled blend after the addition of acrylonitrile butadiene rubber into it. The existence of partial miscibility in the recycled blend was identified using differential scanning calorimetry and scanning electron microscopy.


Subject(s)
Acrylonitrile/chemistry , Polymethyl Methacrylate/chemistry , Recycling , Butadienes , Rubber , Vinyl Chloride
7.
J Photochem Photobiol B ; 183: 397-404, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29778020

ABSTRACT

In the current investigation, TiO2 and TiO2-ZnO (core-shell) spherical nanoparticles were synthesized by simple combined hydrolysis and refluxing method. A TiO2 core nanomaterial on the shell material of ZnO was synthesized by utilizing variable ratios of ZnO. The structural characterization of TiO2-ZnO core/shell nanoparticles were done by XRD analysis. The spherical structured morphology of the TiO2-ZnO has been confirmed through field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) studies. The UV-visible spectra of TiO2-ZnO nanostructures were also compared with the pristine TiO2 to investigate the shift of wavelength. The TiO2-ZnO core/shell nanoparticles at the interface efficiently collect the photogenarated electrons from ZnO and also ZnO act a barrier for reduced charge recombination of electrolyte and dye-nanoparticles interface. This combination improved the light absorption which induced the charge transfer ability and dye loading capacity of core-shell nanoparticles. An enhancement in the short circuit current (Jsc) from 1.67 mA/cm2 to 2.1 mA/cm2 has been observed for TiO2-ZnObased photoanode (with platinum free counter electrode), promises an improvement in the energy conversion efficiency by 57% in comparison with that of the DSSCs based on the pristine TiO2. Henceforth, TiO2-ZnO photoelectrode in ZnO will effectively act as barrier at the interface of TiO2-ZnO and TiO2, ensuring the potential for DSSC application.


Subject(s)
Coloring Agents/chemistry , Eosine Yellowish-(YS)/chemistry , Nanostructures/chemistry , Solar Energy , Titanium/chemistry , Zinc Oxide/chemistry , Electric Power Supplies , Electrochemical Techniques , Electrodes , Graphite/chemistry , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Quantum Theory , Spectrophotometry , X-Ray Diffraction
8.
Waste Manag ; 60: 100-111, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27594574

ABSTRACT

Cables and wires are the indispensable parts of electronic equipments for transmission of both information and electricity. Nowadays, data cables are widely used in the computer equipments for sending information and they become waste once its life cycle is completed. However, recycling of cables and wires are mainly concentrating into the recovery of metals such as aluminium and copper, rather than other polymer present. Polymeric materials from the waste data cables are often disposed into landfills or incinerated, since they have only lower value in recycling yard. From the data cables collected, it has been estimated that the major constituents are copper (58.3%), polyvinyl chloride (19.9%) and polyethylene (16%). Similarly, polycarbonate (2.9%), silicon rubber (1.6%), steel (1.4%) and other material (0.4%) such as cotton cord were also present as minor components. Out of these, polyvinyl chloride is the dominant polymer present in data cables. Hence, the present work investigates the reprocessability of the polyvinyl chloride recovered from the data cables and deals with issues such as premature degradation during life cycle, assessment of plasticizers and degradation after reprocessing. Torque measurement studies using torque rheometer revealed further mechanical recycling possibilites of the recovered polyvinyl chloride. Besides, the applicability of melt blending technique for processing recovered polyvinyl chloride can be found out by analysing thermal behaviour by using thermogravimetric analysis, differential scanning calorimetry and heat distortion temperature.


Subject(s)
Electronic Waste/analysis , Polyvinyl Chloride/analysis , Recycling/methods , Waste Management/methods , Refuse Disposal
9.
Waste Manag ; 46: 536-45, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26383903

ABSTRACT

There is an enormous growth in mobile phone consumption worldwide which leads to generation of a large volume of mobile phone waste every year. The aim of this review is to give an insight on the articles on mobile phone waste management and recycling, published in scientific journals, major proceedings and books from 1999 to 2015. The major areas of research have been identified and discussed based on available literature in each research topic. It was observed that most of these articles were published during the recent years, with the number of articles increasing yearly. Material recovery and review on management options of waste are found to be the leading topics in this area. Researchers have proved that economically viable refurbishing or recycling of such waste is possible in an environmentally friendly manner. However, the literatures indicate that without proper consumer awareness, a recycling system cannot perform to its maximum efficiency. The methodologies followed and analytical techniques employed by the researchers to attain their objectives have been discussed. The graphical representations of available literature on current topic with respect to year of publication, topics and location have also been explored.


Subject(s)
Cell Phone , Recycling/trends , Waste Management
10.
Waste Manag Res ; 32(5): 379-88, 2014 May.
Article in English | MEDLINE | ID: mdl-24695435

ABSTRACT

This study is focused on the recovery and recycling of plastics waste, primarily polycarbonate, poly(acrylonitrile-butadiene-styrene) and high impact polystyrene, from end-of-life waste electrical and electronic equipments. Recycling of used polycarbonate, acrylonitrile-butadiene-styrene, polycarbonate/acrylonitrile-butadiene-styrene and acrylonitrile-butadiene-styrene/high impact polystrene material was carried out using material recycling through a melt blending process. An optimized blend composition was formulated to achieve desired properties from different plastics present in the waste electrical and electronic equipments. The toughness of blended plastics was improved with the addition of 10 wt% of virgin polycarbonate and impact modifier (ethylene-acrylic ester-glycidyl methacrylate). The mechanical, thermal, dynamic-mechanical and morphological properties of recycled blend were investigated. Improved properties of blended plastics indicate better miscibility in the presence of a compatibilizer suitable for high-end application.


Subject(s)
Electronic Waste/analysis , Recycling , Waste Management , Acrylic Resins/chemistry , Butadienes/chemistry , Hot Temperature , Polymers/chemistry , Polystyrenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...