Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Chem ; 240: 114594, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-35853430

ABSTRACT

In contrast to other sirtuins (NAD+-dependent class III lysine deacylases), inhibition of Sirt5 is poorly investigated, yet. Our present work is based on the recently identified Sirt5 inhibitor balsalazide, an approved drug with negligible bioavailability after oral administration. After gaining first insights into its structure-activity relationship in previous work, we were able to now develop heteroaryl-triaryls as a novel chemotype of drug-like, potent and subtype-selective Sirt5 inhibitors. The unfavourable azo group of the lead structure was modified in a systematic and comprehensive manner, leading us to a few open-chained and, most importantly, five-membered heteroaromatic substitutes (isoxazole CG_209, triazole CG_220, pyrazole CG_232) with very encouraging in vitro activities (IC50 on Sirt5 in the low micromolar range, <10 µM). These advanced inhibitors were free of cytotoxicity and showed favourable pharmacokinetic properties, as confirmed by permeability into mitochondria using live cell imaging experiments. Furthermore, results from calculations of the relative free binding affinities of the analogues compared to balsalazide as reference compound agreed well with the trends for inhibitory activities obtained in the in vitro experiments. Therefore, this method can be used to predict the affinity of closely related future potential Sirt5 inhibitors. Encouraged by our findings, we employed chemoproteomic selectivity profiling to confirm Sirt5 as main target of balsalazide and one of its improved analogues. An immobilised balsalazide-analogue specifically pulled down Sirt5 from whole cell lysates and competition experiments identified glutaryl-CoA dehydrogenase (GCDH) and nucleotide diphosphate kinase (NME4) as potential off-targets, once again confirming the selectivity of the novel balsalazide-derived Sirt5 inhibitors. In summary, a combination of targeted chemical synthesis, biological work, and computational studies led to a new generation of tailored Sirt5 inhibitors, which represent valuable chemical tools for the investigation of the physiological role of Sirt5, but could also serve as advanced lead structures for drug candidates for systemic use.


Subject(s)
Sirtuins , Lysine , Mitochondria/metabolism , Sirtuins/metabolism , Structure-Activity Relationship
2.
J Chem Theory Comput ; 15(8): 4344-4350, 2019 Aug 13.
Article in English | MEDLINE | ID: mdl-31318548

ABSTRACT

Uracil DNA glycosylase catalyzes the N-glycosidic bond cleavage of uracil, thereby initiating the base excision repair mechanism for this DNA lesion. Here we employ hybrid quantum mechanics/molecular mechanics calculations to investigate the exact mechanism of the nucleophile attack and the role of the conserved His148 residue. Our calculations suggest that the C1'-N1 bond dissociation proceeds by a migration of the electrophilic sugar in the direction of the water nucleophile, resulting in a planar, oxocarbenium-like transition state. The subsequent nucleophile addition and proton transfer to a nearby base occur without a barrier. We assign the role of a proton acceptor to His148 and elucidate why mutations of this residue curtail the enzymatic activity but do not fully suppress it.


Subject(s)
Histidine/chemistry , Uracil-DNA Glycosidase/chemistry , Aspartic Acid/chemistry , Aspartic Acid/metabolism , Histidine/metabolism , Humans , Models, Molecular , Protons , Quantum Theory , Thermodynamics , Uracil-DNA Glycosidase/metabolism , Water/chemistry
3.
J Phys Chem B ; 123(19): 4173-4179, 2019 05 16.
Article in English | MEDLINE | ID: mdl-31042033

ABSTRACT

Thymine DNA glycosylase (TDG) initiates the base excision repair mechanism for the deamination and oxidation products of cytosine and 5-methylcytosine. This enzyme has a key role in epigenetic regulation, and its catalytic inactivation results in, e.g., mice embryo lethality. Here, we employ molecular dynamics simulations and quantum mechanics/molecular mechanics calculations to investigate the reaction mechanism of the TDG-catalyzed N-glycosidic bond hydrolysis of the modified base 5-formylcytosine. Our results reveal a reaction pathway, which in its first step features a reorganization of the substrate that lowers the barrier height for the subsequent C1'-N1 bond dissociation. The suggested mechanism is consistent with the experimental data, as it is not acid-catalyzed and proceeds through an oxocarbenium-like transition state. It also provides insights into the catalytic roles of the Thr197 and Asn140 residues.


Subject(s)
Cytosine/analogs & derivatives , DNA/chemistry , Thymine DNA Glycosylase/chemistry , Asparagine/chemistry , Catalytic Domain , Cytosine/chemistry , Humans , Hydrolysis , Models, Chemical , Molecular Dynamics Simulation , Molecular Structure , Quantum Theory , Threonine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...