Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Behav Brain Sci ; 46: e394, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38054325

ABSTRACT

Bowers et al. express skepticism about deep neural networks (DNNs) as models of human vision due to DNNs' failures to account for results from psychological research. We argue that to fairly assess DNNs, we must first train them on more human-like tasks which we hypothesize will induce more human-like behaviors and representations.


Subject(s)
Deep Learning , Neural Networks, Computer , Humans
2.
PLoS Comput Biol ; 19(10): e1011506, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37782673

ABSTRACT

Studies of the mouse visual system have revealed a variety of visual brain areas that are thought to support a multitude of behavioral capacities, ranging from stimulus-reward associations, to goal-directed navigation, and object-centric discriminations. However, an overall understanding of the mouse's visual cortex, and how it supports a range of behaviors, remains unknown. Here, we take a computational approach to help address these questions, providing a high-fidelity quantitative model of mouse visual cortex and identifying key structural and functional principles underlying that model's success. Structurally, we find that a comparatively shallow network structure with a low-resolution input is optimal for modeling mouse visual cortex. Our main finding is functional-that models trained with task-agnostic, self-supervised objective functions based on the concept of contrastive embeddings are much better matches to mouse cortex, than models trained on supervised objectives or alternative self-supervised methods. This result is very much unlike in primates where prior work showed that the two were roughly equivalent, naturally leading us to ask the question of why these self-supervised objectives are better matches than supervised ones in mouse. To this end, we show that the self-supervised, contrastive objective builds a general-purpose visual representation that enables the system to achieve better transfer on out-of-distribution visual scene understanding and reward-based navigation tasks. Our results suggest that mouse visual cortex is a low-resolution, shallow network that makes best use of the mouse's limited resources to create a light-weight, general-purpose visual system-in contrast to the deep, high-resolution, and more categorization-dominated visual system of primates.


Subject(s)
Learning , Visual Cortex , Animals , Mice , Brain , Brain Mapping , Primates
3.
Neuron ; 111(17): 2742-2755.e4, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37451264

ABSTRACT

Understanding the circuit mechanisms of the visual code for natural scenes is a central goal of sensory neuroscience. We show that a three-layer network model predicts retinal natural scene responses with an accuracy nearing experimental limits. The model's internal structure is interpretable, as interneurons recorded separately and not modeled directly are highly correlated with model interneurons. Models fitted only to natural scenes reproduce a diverse set of phenomena related to motion encoding, adaptation, and predictive coding, establishing their ethological relevance to natural visual computation. A new approach decomposes the computations of model ganglion cells into the contributions of model interneurons, allowing automatic generation of new hypotheses for how interneurons with different spatiotemporal responses are combined to generate retinal computations, including predictive phenomena currently lacking an explanation. Our results demonstrate a unified and general approach to study the circuit mechanisms of ethological retinal computations under natural visual scenes.


Subject(s)
Models, Neurological , Retina , Retina/physiology , Neurons/physiology , Interneurons/physiology
4.
ArXiv ; 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37292459

ABSTRACT

Humans and animals have a rich and flexible understanding of the physical world, which enables them to infer the underlying dynamical trajectories of objects and events, plausible future states, and use that to plan and anticipate the consequences of actions. However, the neural mechanisms underlying these computations are unclear. We combine a goal-driven modeling approach with dense neurophysiological data and high-throughput human behavioral readouts that contain thousands of comparisons to directly impinge on this question. Specifically, we construct and evaluate several classes of sensory-cognitive networks to predict the future state of rich, ethologically-relevant environments, ranging from self-supervised end-to-end models with pixel-wise or object-slot objectives, to models that future predict in the latent space of purely static image-pretrained or dynamic video-pretrained foundation models. We find that "scale is not all you need", and that many state-of-the-art machine learning models fail to perform well on our neural and behavioral benchmarks for future prediction. In fact, only one class of models matches these data well overall. We find that neural responses are currently best predicted by models trained to predict the future state of their environment in the latent space of pretrained foundation models optimized for dynamic scenes in a self-supervised manner. These models also approach the neurons' ability to predict the environmental state variables that are visually hidden from view, despite not being explicitly trained to do so. Finally, we find that not all foundation model latents are equal. Notably, models that future predict in the latent space of video foundation models that are optimized to support a diverse range of egocentric sensorimotor tasks, reasonably match both human behavioral error patterns and neural dynamics across all environmental scenarios that we were able to test. Overall, these findings suggest that the neural mechanisms and behaviors of primate mental simulation have strong inductive biases associated with them, and are thus far most consistent with being optimized to future predict on reusable visual representations that are useful for Embodied AI more generally.

5.
Neural Comput ; 34(8): 1652-1675, 2022 07 14.
Article in English | MEDLINE | ID: mdl-35798321

ABSTRACT

The computational role of the abundant feedback connections in the ventral visual stream is unclear, enabling humans and nonhuman primates to effortlessly recognize objects across a multitude of viewing conditions. Prior studies have augmented feedforward convolutional neural networks (CNNs) with recurrent connections to study their role in visual processing; however, often these recurrent networks are optimized directly on neural data or the comparative metrics used are undefined for standard feedforward networks that lack these connections. In this work, we develop task-optimized convolutional recurrent (ConvRNN) network models that more correctly mimic the timing and gross neuroanatomy of the ventral pathway. Properly chosen intermediate-depth ConvRNN circuit architectures, which incorporate mechanisms of feedforward bypassing and recurrent gating, can achieve high performance on a core recognition task, comparable to that of much deeper feedforward networks. We then develop methods that allow us to compare both CNNs and ConvRNNs to finely grained measurements of primate categorization behavior and neural response trajectories across thousands of stimuli. We find that high-performing ConvRNNs provide a better match to these data than feedforward networks of any depth, predicting the precise timings at which each stimulus is behaviorally decoded from neural activation patterns. Moreover, these ConvRNN circuits consistently produce quantitatively accurate predictions of neural dynamics from V4 and IT across the entire stimulus presentation. In fact, we find that the highest-performing ConvRNNs, which best match neural and behavioral data, also achieve a strong Pareto trade-off between task performance and overall network size. Taken together, our results suggest the functional purpose of recurrence in the ventral pathway is to fit a high-performing network in cortex, attaining computational power through temporal rather than spatial complexity.


Subject(s)
Task Performance and Analysis , Visual Perception , Animals , Humans , Macaca mulatta/physiology , Neural Networks, Computer , Pattern Recognition, Visual/physiology , Recognition, Psychology/physiology , Visual Pathways/physiology , Visual Perception/physiology
6.
Cell Rep ; 37(6): 109972, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34758304

ABSTRACT

Cortical function relies on the balanced activation of excitatory and inhibitory neurons. However, little is known about the organization and dynamics of shaft excitatory synapses onto cortical inhibitory interneurons. Here, we use the excitatory postsynaptic marker PSD-95, fluorescently labeled at endogenous levels, as a proxy for excitatory synapses onto layer 2/3 pyramidal neurons and parvalbumin-positive (PV+) interneurons in the barrel cortex of adult mice. Longitudinal in vivo imaging under baseline conditions reveals that, although synaptic weights in both neuronal types are log-normally distributed, synapses onto PV+ neurons are less heterogeneous and more stable. Markov model analyses suggest that the synaptic weight distribution is set intrinsically by ongoing cell-type-specific dynamics, and substantial changes are due to accumulated gradual changes. Synaptic weight dynamics are multiplicative, i.e., changes scale with weights, although PV+ synapses also exhibit an additive component. These results reveal that cell-type-specific processes govern cortical synaptic strengths and dynamics.


Subject(s)
Disks Large Homolog 4 Protein/physiology , Excitatory Postsynaptic Potentials/physiology , Interneurons/physiology , Neural Inhibition , Parvalbumins/metabolism , Pyramidal Cells/physiology , Synapses/physiology , Animals , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuronal Plasticity
7.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Article in English | MEDLINE | ID: mdl-33431673

ABSTRACT

Deep neural networks currently provide the best quantitative models of the response patterns of neurons throughout the primate ventral visual stream. However, such networks have remained implausible as a model of the development of the ventral stream, in part because they are trained with supervised methods requiring many more labels than are accessible to infants during development. Here, we report that recent rapid progress in unsupervised learning has largely closed this gap. We find that neural network models learned with deep unsupervised contrastive embedding methods achieve neural prediction accuracy in multiple ventral visual cortical areas that equals or exceeds that of models derived using today's best supervised methods and that the mapping of these neural network models' hidden layers is neuroanatomically consistent across the ventral stream. Strikingly, we find that these methods produce brain-like representations even when trained solely with real human child developmental data collected from head-mounted cameras, despite the fact that these datasets are noisy and limited. We also find that semisupervised deep contrastive embeddings can leverage small numbers of labeled examples to produce representations with substantially improved error-pattern consistency to human behavior. Taken together, these results illustrate a use of unsupervised learning to provide a quantitative model of a multiarea cortical brain system and present a strong candidate for a biologically plausible computational theory of primate sensory learning.


Subject(s)
Nerve Net/physiology , Neural Networks, Computer , Neurons/physiology , Pattern Recognition, Visual/physiology , Visual Cortex/physiology , Animals , Child , Datasets as Topic , Humans , Macaca/physiology , Nerve Net/anatomy & histology , Unsupervised Machine Learning , Visual Cortex/anatomy & histology
8.
Adv Neural Inf Process Syst ; 32: 8537-8547, 2019 Dec.
Article in English | MEDLINE | ID: mdl-35283616

ABSTRACT

Recently, deep feedforward neural networks have achieved considerable success in modeling biological sensory processing, in terms of reproducing the input-output map of sensory neurons. However, such models raise profound questions about the very nature of explanation in neuroscience. Are we simply replacing one complex system (a biological circuit) with another (a deep network), without understanding either? Moreover, beyond neural representations, are the deep network's computational mechanisms for generating neural responses the same as those in the brain? Without a systematic approach to extracting and understanding computational mechanisms from deep neural network models, it can be difficult both to assess the degree of utility of deep learning approaches in neuroscience, and to extract experimentally testable hypotheses from deep networks. We develop such a systematic approach by combining dimensionality reduction and modern attribution methods for determining the relative importance of interneurons for specific visual computations. We apply this approach to deep network models of the retina, revealing a conceptual understanding of how the retina acts as a predictive feature extractor that signals deviations from expectations for diverse spatiotemporal stimuli. For each stimulus, our extracted computational mechanisms are consistent with prior scientific literature, and in one case yields a new mechanistic hypothesis. Thus overall, this work not only yields insights into the computational mechanisms underlying the striking predictive capabilities of the retina, but also places the framework of deep networks as neuroscientific models on firmer theoretical foundations, by providing a new roadmap to go beyond comparing neural representations to extracting and understand computational mechanisms.

9.
Adv Neural Inf Process Syst ; 29: 1369-1377, 2016.
Article in English | MEDLINE | ID: mdl-28729779

ABSTRACT

A central challenge in sensory neuroscience is to understand neural computations and circuit mechanisms that underlie the encoding of ethologically relevant, natural stimuli. In multilayered neural circuits, nonlinear processes such as synaptic transmission and spiking dynamics present a significant obstacle to the creation of accurate computational models of responses to natural stimuli. Here we demonstrate that deep convolutional neural networks (CNNs) capture retinal responses to natural scenes nearly to within the variability of a cell's response, and are markedly more accurate than linear-nonlinear (LN) models and Generalized Linear Models (GLMs). Moreover, we find two additional surprising properties of CNNs: they are less susceptible to overfitting than their LN counterparts when trained on small amounts of data, and generalize better when tested on stimuli drawn from a different distribution (e.g. between natural scenes and white noise). An examination of the learned CNNs reveals several properties. First, a richer set of feature maps is necessary for predicting the responses to natural scenes compared to white noise. Second, temporally precise responses to slowly varying inputs originate from feedforward inhibition, similar to known retinal mechanisms. Third, the injection of latent noise sources in intermediate layers enables our model to capture the sub-Poisson spiking variability observed in retinal ganglion cells. Fourth, augmenting our CNNs with recurrent lateral connections enables them to capture contrast adaptation as an emergent property of accurately describing retinal responses to natural scenes. These methods can be readily generalized to other sensory modalities and stimulus ensembles. Overall, this work demonstrates that CNNs not only accurately capture sensory circuit responses to natural scenes, but also can yield information about the circuit's internal structure and function.

SELECTION OF CITATIONS
SEARCH DETAIL
...