Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 4601, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834558

ABSTRACT

Precise neurostimulation can revolutionize therapies for neurological disorders. Electrode-based stimulation devices face challenges in achieving precise and consistent targeting due to the immune response and the limited penetration of electrical fields. Ultrasound can aid in energy propagation, but transcranial ultrasound stimulation in the deep brain has limited spatial resolution caused by bone and tissue scattering. Here, we report an implantable piezoelectric ultrasound stimulator (ImPULS) that generates an ultrasonic focal pressure of 100 kPa to modulate the activity of neurons. ImPULS is a fully-encapsulated, flexible piezoelectric micromachined ultrasound transducer that incorporates a biocompatible piezoceramic, potassium sodium niobate [(K,Na)NbO3]. The absence of electrochemically active elements poses a new strategy for achieving long-term stability. We demonstrated that ImPULS can i) excite neurons in a mouse hippocampal slice ex vivo, ii) activate cells in the hippocampus of an anesthetized mouse to induce expression of activity-dependent gene c-Fos, and iii) stimulate dopaminergic neurons in the substantia nigra pars compacta to elicit time-locked modulation of nigrostriatal dopamine release. This work introduces a non-genetic ultrasound platform for spatially-localized neural stimulation and exploration of basic functions in the deep brain.


Subject(s)
Deep Brain Stimulation , Hippocampus , Ultrasonic Waves , Animals , Deep Brain Stimulation/instrumentation , Deep Brain Stimulation/methods , Mice , Mice, Inbred C57BL , Dopaminergic Neurons , Male , Dopamine/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Substantia Nigra , Neurons/physiology , Transducers
2.
ACS Appl Mater Interfaces ; 16(21): 27065-27074, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38748094

ABSTRACT

Wearable biomedical sensors have enabled noninvasive and continuous physiological monitoring for daily health management and early detection of chronic diseases. Among biomedical sensors, wearable pH sensors attracted significant interest, as pH influences most biological reactions. However, conformable pH sensors that have sweat absorption ability, are self-adhesive to the skin, and are gas permeable remain largely unexplored. In this study, we present a pioneering approach to this problem by developing a Janus membrane-based pH sensor with self-adhesiveness on the skin. The sensor is composed of a hydrophobic polyurethane-polydimethylsiloxane porous hundreds nanometer-thick substrate and a hydrophilic poly(vinyl alcohol)-poly(acrylic acid) porous nanofiber layer. This Janus membrane exhibits a thickness of around 10 µm, providing a conformable adhesion to the skin. The simultaneous realization of solution absorption, gas permeability, and self-adhesiveness makes it suitable for long-term continuous monitoring without compromising the comfort of the wearer. The pH sensor was tested successfully for continuous monitoring for 7.5 h, demonstrating its potential for stable analysis of skin health conditions. The Janus membrane-based pH sensor holds significant promise for comprehensive skin health monitoring and wearable biomedical applications.


Subject(s)
Polyurethanes , Sweat , Wearable Electronic Devices , Hydrogen-Ion Concentration , Humans , Sweat/chemistry , Polyurethanes/chemistry , Permeability , Acrylic Resins/chemistry , Membranes, Artificial , Dimethylpolysiloxanes/chemistry , Adhesiveness , Nanofibers/chemistry , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Porosity , Gases/chemistry , Gases/analysis
3.
Adv Mater ; 35(23): e2300066, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36934314

ABSTRACT

Increased consumer interest in healthy-looking skin demands a safe and effective method to increase transdermal absorption of innovative therapeutic cosmeceuticals. However, permeation of small-molecule drugs is limited by the innate barrier function of the stratum corneum. Here, a conformable ultrasound patch (cUSP) that enhances transdermal transport of niacinamide by inducing intermediate-frequency sonophoresis in the fluid coupling medium between the patch and the skin is reported. The cUSP consists of piezoelectric transducers embedded in a soft elastomer to create localized cavitation pockets (0.8 cm2 , 1 mm deep) over larger areas of conformal contact (20 cm2 ). Multiphysics simulation models, acoustic spectrum analysis, and high-speed videography are used to characterize transducer deflection, acoustic pressure fields, and resulting cavitation bubble dynamics in the coupling medium. The final system demonstrates a 26.2-fold enhancement in niacinamide transport in a porcine model in vitro with a 10 min ultrasound application, demonstrating the suitability of the device for short-exposure, large-area application of sonophoresis for patients and consumers suffering from skin conditions and premature skin aging.


Subject(s)
Cosmeceuticals , Swine , Animals , Cosmeceuticals/metabolism , Ultrasonics/methods , Administration, Cutaneous , Skin/metabolism , Skin Absorption
4.
Sci Adv ; 8(20): eabo1396, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35594357

ABSTRACT

Long-term high-fidelity electroencephalogram (EEG) recordings are critical for clinical and brain science applications. Conductive liquid-like or solid-like wet interface materials have been conventionally used as reliable interfaces for EEG recording. However, because of their simplex liquid or solid phase, electrodes with them as interfaces confront inadequate dynamic adaptability to hairy scalp, which makes it challenging to maintain stable and efficient contact of electrodes with scalp for long-term EEG recording. Here, we develop an on-skin paintable conductive biogel that shows temperature-controlled reversible fluid-gel transition to address the abovementioned limitation. This phase transition endows the biogel with unique on-skin paintability and in situ gelatinization, establishing conformal contact and dynamic compliance of electrodes with hairy scalp. The biogel is demonstrated as an efficient interface for long-term high-quality EEG recording over several days and for the high-performance capture and classification of evoked potentials. The paintable biogel offers a biocompatible and long-term reliable interface for EEG-based systems.

5.
Adv Mater ; 34(6): e2107758, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34706136

ABSTRACT

A smart face mask that can conveniently monitor breath information is beneficial for maintaining personal health and preventing the spread of diseases. However, some challenges still need to be addressed before such devices can be of practical use. One key challenge is to develop a pressure sensor that is easily triggered by low pressure and has excellent stability as well as electrical and mechanical properties. In this study, a wireless smart face mask is designed by integrating an ultrathin self-powered pressure sensor and a compact readout circuit with a normal face mask. The pressure sensor is the thinnest (totally compressed thickness of ≈5.5 µm) and lightest (total weight of ≈4.5 mg) electrostatic pressure sensor capable of achieving a peak open-circuit voltage of up to ≈10 V when stimulated by airflow, which endows the sensor with the advantage of readout circuit miniaturization and makes the breath-monitoring system portable and wearable. To demonstrate the capabilities of the smart face mask, it is used to wirelessly measure and analyze the various breath conditions of multiple testers.


Subject(s)
Electrocardiography , Masks , Monitoring, Physiologic
6.
Science ; 370(6519): 966-970, 2020 11 20.
Article in English | MEDLINE | ID: mdl-33214278

ABSTRACT

Monitoring of finger manipulation without disturbing the inherent functionalities is critical to understand the sense of natural touch. However, worn or attached sensors affect the natural feeling of the skin. We developed nanomesh pressure sensors that can monitor finger pressure without detectable effects on human sensation. The effect of the sensor on human sensation was quantitatively investigated, and the sensor-applied finger exhibits comparable grip forces with those of the bare finger, even though the attachment of a 2-micrometer-thick polymeric film results in a 14% increase in the grip force after adjusting for friction. Simultaneously, the sensor exhibits an extreme mechanical durability against cyclic shearing and friction greater than hundreds of kilopascals.


Subject(s)
Fingers/physiology , Monitoring, Physiologic/instrumentation , Nanostructures , Touch , Friction , Humans , Pressure , Shear Strength
7.
Proc Natl Acad Sci U S A ; 117(13): 7063-7070, 2020 03 31.
Article in English | MEDLINE | ID: mdl-32188781

ABSTRACT

The prolonged and continuous monitoring of mechanoacoustic heart signals is essential for the early diagnosis of cardiovascular diseases. These bodily acoustics have low intensity and low frequency, and measuring them continuously for long periods requires ultrasensitive, lightweight, gas-permeable mechanoacoustic sensors. Here, we present an all-nanofiber mechanoacoustic sensor, which exhibits a sensitivity as high as 10,050.6 mV Pa-1 in the low-frequency region (<500 Hz). The high sensitivity is achieved by the use of durable and ultrathin (2.5 µm) nanofiber electrode layers enabling a large vibration of the sensor during the application of sound waves. The sensor is ultralightweight, and the overall weight is as small as 5 mg or less. The devices are mechanically robust against bending, and show no degradation in performance even after 1,000-cycle bending. Finally, we demonstrate a continuous long-term (10 h) measurement of heart signals with a signal-to-noise ratio as high as 40.9 decibels (dB).


Subject(s)
Acoustics/instrumentation , Heart/physiology , Monitoring, Physiologic/instrumentation , Nanofibers , Electrodes , Humans
8.
Adv Mater ; 31(37): e1903446, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31339196

ABSTRACT

On-skin electronics require conductive, porous, and stretchable materials for a stable operation with minimal invasiveness to the human body. However, porous elastic conductors that simultaneously achieve high conductivity, good stretchability, and durability are rare owing to the lack of proper design for good adhesion between porous elastic polymer and conductive metallic networks. Here, a simple fabrication approach for porous nanomesh-type elastic conductors is shown by designing a layer-by-layer structure of nanofibers/nanowires (NFs/NWs) via interfacial hydrogen bonding. The as-prepared conductors, consisting of Ag NWs and polyurethane (PU) NFs, simultaneously achieve high conductivity (9190 S cm-1 ), high stretchability (310%), and good durability (82% resistance increase after 1000 cycles of deformation at 70% tensile strain). The direct contact between the Ag NWs enables the high conductivity. The synergistic effect of the layer-by-layer structure and good adhesion between the Ag NWs and the PU NFs enables good mechanical properties. Furthermore, without any adhesive gel/tape, the conductors can be utilized as breathable strain sensors for precise joint motion monitoring, and as breathable sensing electrodes for continuous electrophysiological signal recording.


Subject(s)
Elasticity , Nanofibers/chemistry , Nanowires/chemistry , Polyurethanes/chemistry , Silver/chemistry , Adhesiveness , Electric Conductivity , Hydrogen Bonding , Models, Molecular , Molecular Conformation , Porosity , Tensile Strength
9.
ACS Nano ; 13(7): 7905-7912, 2019 07 23.
Article in English | MEDLINE | ID: mdl-31244040

ABSTRACT

Soft and stretchable electrodes are essential components for skin-tight wearable devices, which can provide comfortable, unobtrusive, and accurate physiological monitoring and physical sensing for applications such as healthcare, medical treatment, and human-machine interfaces. Metal-elastomer nanocomposites are a promising approach, enabling high conductivity and stretchability derived from metallic conduction and percolation networks of metal nano/micro fillers. However, their practical application is still limited by their inferior cyclic stability and long-term durability. Here, we report on a highly durable nanofiber-reinforced metal-elastomer composite consisting of (i) metal fillers, (ii) an elastomeric binder matrix, and (iii) electrospun polyvinylidene fluoride nanofibers for enhancing both cyclic stability and conductivity. Embedded polyvinylidene fluoride (PVDF) nanofibers enhance the toughness and suppress the crack growth by providing a fiber reinforcing effect. Furthermore, the conductivity of nanofiber-reinforced elastic conductor is four times greater than the pristine material because the silver-rich layer is self-assembled on the top surface by a filtering effect. As a result, a stretchable electrode made from nanofiber-reinforced elastic conductors and wrinkled structures has both excellent cyclic durability and high conductivity and is stretchable up to 800%. The cyclic degradation (ΔR/R0) remains at 0.56 after 5000 stretching cycles (50% strain), whereas initial conductivity and sheet resistance are 9903 S cm-1 and 0.047 Ω sq-1, respectively. By utilizing a highly conductive and durable elastic conductor as sensor electrodes and wirings, a skin-tight multimodal physiological sensing suit is demonstrated. Continuous long-term monitoring of electrocardiogram, electromyogram, and motions during weight-lifting exercises are successfully demonstrated without significant degradation of signal quality.


Subject(s)
Nanofibers/chemistry , Polyvinyls/chemistry , Silver/chemistry , Textiles , Wearable Electronic Devices , Elastomers , Electric Conductivity , Electrodes , Particle Size , Surface Properties
10.
Nano Lett ; 18(9): 5610-5617, 2018 09 12.
Article in English | MEDLINE | ID: mdl-30070850

ABSTRACT

Soft strain sensors are needed for a variety of applications including human motion and health monitoring, soft robotics, and human/machine interactions. Capacitive-type strain sensors are excellent candidates for practical applications due to their great linearity and low hysteresis; however, a big limitation of this sensor is its inherent property of low sensitivity when it comes to detecting various levels of applied strain. This limitation is due to the structural properties of the parallel plate capacitor structure during applied stretching operations. According to this model, at best the maximum gauge factor (sensitivity) that can be achieved is 1. Here, we report the highest gauge factor ever achieved in capacitive-type strain sensors utilizing an ultrathin wrinkled gold film electrode. Our strain sensor achieved a gauge factor slightly above 3 and exhibited high linearity with negligible hysteresis over a maximum applied strain of 140%. We further demonstrated this highly sensitive strain sensor in a wearable application. This work opens up the possibility of engineering even higher sensitivity in capacitive-type strain sensors for practical and reliable wearable applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...