Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2183: 477-487, 2021.
Article in English | MEDLINE | ID: mdl-32959261

ABSTRACT

Pneumococcal disease is caused by Streptococcus pneumoniae, a colonizing microorganism characterized by transitioning from a benign commensal to a virulent pathogen in the presence of suitable circumstances, which then poses a serious infectious disease threat afflicting millions of people. Especially affected are the young and elderly through outcomes that include pneumonia, bacteremia, meningitis, and otitis media. Current prevention vaccine options on the market contain capsular polysaccharides conjugated to the Diphtheria CRM197 protein (Pfizer) or are composed of only pneumococcal polysaccharides (Merck), and in both cases, limitations prevent the generation of comprehensive disease protection. Through the use of a liposomal carrier, we present an alternative methodology for producing a vaccine product via noncovalent colocalization of both polysaccharide and protein classes of complementary pneumococcal disease immunogens.


Subject(s)
Antigens, Bacterial/immunology , Bacterial Proteins/immunology , Bacterial Vaccines/administration & dosage , Bacterial Vaccines/immunology , Drug Delivery Systems , Liposomes , Polysaccharides/immunology , Animals , Antigens, Bacterial/administration & dosage , Bacterial Proteins/administration & dosage , Genes, Reporter , Host-Pathogen Interactions , Humans , Immunity , Immunization , Mice , Polysaccharides/administration & dosage , Protein Binding , Vaccination/methods
2.
Front Aging ; 22021.
Article in English | MEDLINE | ID: mdl-35291600

ABSTRACT

Despite the availability of licensed vaccines, pneumococcal disease caused by the bacteria Streptococcus pneumoniae (pneumococcus), remains a serious infectious disease threat globally. Disease manifestations include pneumonia, bacteremia, and meningitis, resulting in over a million deaths annually. Pneumococcal disease disproportionally impacts older adults aged ≥65 years. Interventions are complicated through a combination of complex disease progression and 100 different bacterial capsular polysaccharide serotypes. This has made it challenging to develop a broad vaccine against S. pneumoniae, with current options utilizing capsular polysaccharides as the primary antigenic content. However, current vaccines are substantially less effective in protecting the elderly. We previously developed a Liposomal Encapsulation of Polysaccharides (LEPS) vaccine platform, designed around limitations of current pneumococcal vaccines, that allowed the noncovalent coupling of polysaccharide and protein antigen content and protected young hosts against pneumococcal infection in murine models. In this study, we modified the formulation to make it more economical and tested the novel LEPS vaccine in aged hosts. We found that in young mice (2-3 months), LEPS elicited comparable responses to the pneumococcal conjugate vaccine Prevnar-13. Further, LEPS immunization of old mice (18-22 months) induced comparable antibody levels and improved antibody function compared to Prevnar-13. Importantly, LEPS protected old mice against both invasive and lung localized pneumococcal infections. In summary, LEPS is an alternative and effective vaccine strategy that protects aged hosts against different manifestations of pneumococcal disease.

3.
Materials (Basel) ; 13(15)2020 Jul 26.
Article in English | MEDLINE | ID: mdl-32722578

ABSTRACT

The Liposomal Encapsulation of Polysaccharides (LEPS) dual antigen vaccine carrier system was assessed across two distinct polysaccharides for encapsulation efficiency, subsequent liposomal surface adornment with protein, adjuvant addition, and size and charge metrics. The polysaccharides derive from two different serotypes of Streptococcus pneumoniae and have traditionally served as the active ingredients of vaccines against pneumococcal disease. The LEPS system was designed to mimic glycoconjugate vaccines that covalently couple polysaccharides to protein carriers; however, the LEPS system uses a noncovalent co-localization mechanism through protein liposomal surface attachment. In an effort to more thoroughly characterize the LEPS system across individual vaccine components and thus support broader future utility, polysaccharides from S. pneumoniae serotypes 3 and 4 were systematically compared within the LEPS framework both pre- and post-surface protein attachment. For both polysaccharides, ≥85% encapsulation efficiency was achieved prior to protein surface attachment. Upon protein attachment with either a model protein (GFP) or a pneumococcal disease antigen (PncO), polysaccharide encapsulation was maintained at ≥61% encapsulation efficiency. Final LEPS carriers were also evaluated with and without alum as an included adjuvant, with encapsulation efficiency maintained at ≥30%, while protein surface attachment efficiency was maintained at ≥~50%. Finally, similar trends and distributions were observed across the different polysaccharides when assessed for liposomal zeta potential and size.

4.
Materials (Basel) ; 12(17)2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31480544

ABSTRACT

The enclosed work focuses on the construction variables associated with a dual-antigen liposomal carrier, delivering encapsulated polysaccharides and surface-localized proteins, which served as a vaccine delivery device effective against pneumococcal disease. Here, the goal was to better characterize and compare the carrier across a range of formulation steps and assessment metrics. Specifically, the vaccine carrier was subjected to new methods of liposomal formation, including alterations to the base components used for subsequent macromolecule encapsulation and surface attachment, with characterization spanning polysaccharide encapsulation, liposomal size and charge, and surface protein localization. Results demonstrate variations across the liposomal constructs comprised two means of surface-localizing proteins (either via metal or biological affinity). In general, final liposomal constructs demonstrated a size and zeta potential range of approximately 50 to 600 nm and -4 to -41 mV, respectively, while demonstrating at least 60% polysaccharide encapsulation efficiency and 60% protein surface localization for top-performing liposomal carrier constructs. The results, thus, indicate that multiple formulations could serve in support of vaccination studies, and that the selection of a suitable final delivery system would be dictated by preferences or requirements linked to target antigens and/or regulatory demands.

5.
ACS Infect Dis ; 4(11): 1553-1563, 2018 11 09.
Article in English | MEDLINE | ID: mdl-30180541

ABSTRACT

We detail the development of a next-generation Streptococcus pneumoniae liposomal encapsulation of polysaccharides (LEPS) vaccine, with design characteristics geared toward best-in-class efficacy. The first generation LEPS vaccine, which contained 20 encapsulated pneumococcal capsular polysaccharides (CPSs) and two surface-displayed virulence-associated proteins (GlpO and PncO), enabling prophylactic potency against 70+ serotypes of Streptococcus pneumoniae (the causative agent of pneumococcal disease), was rationally redesigned for advanced clinical readiness and best-in-class coverage. In doing so, the virulent-specific GlpO protein antigen was removed from the final formulation due to off-target immunogenicity toward bacterial species within the human microbiome, while directed protection was maintained by increasing the dose of PncO from 17 to 68 µg. LEPS formulation parameters also readily facilitated an increase in CPS valency (to a total of 24) and systematic variation in protein-liposome attachment mechanisms in anticipation of clinical translation. An additional safety assessment study demonstrated that LEPS does not exhibit appreciable toxicological effects even when administered at ten times the effective dose. In summary, this new design offers the broadest, safest, and most-complete protection while maintaining desirable glycoconjugate-like features, positioning the LEPS vaccine platform for clinical success and a global health impact.


Subject(s)
Bacterial Capsules/immunology , Liposomes/chemistry , Pneumococcal Vaccines/immunology , Polysaccharides, Bacterial/immunology , Vaccines, Conjugate/immunology , Animals , Antibodies, Bacterial/immunology , Cell Line , Female , Glycoconjugates/chemistry , Glycoconjugates/immunology , Humans , Immunization , Injections, Subcutaneous , Male , Mice , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines/chemistry , Serogroup , Streptococcus pneumoniae , Vaccines, Conjugate/chemistry
6.
Sci Adv ; 3(10): e1701797, 2017 10.
Article in English | MEDLINE | ID: mdl-29057325

ABSTRACT

Commensal organisms with the potential to cause disease pose a challenge in developing treatment options. Using the example featured in this study, pneumococcal disease begins with Streptococcus pneumoniae colonization, followed by triggering events that prompt the release of a virulent subpopulation of bacteria. Current vaccines focus on colonization prevention, which poses unintended consequences of serotype niche replacement. In this study, noncovalent colocalization of two classes of complementary antigens, one to prevent the colonization of the most aggressive S. pneumoniae serotypes and another to restrict virulence transition, provides complete vaccine effectiveness in animal subjects and the most comprehensive coverage of disease reported to date. As a result, the proposed vaccine formulation offers universal pneumococcal disease prevention with the prospect of effectively managing a disease that afflicts tens to hundreds of millions globally. The approach more generally puts forth a balanced prophylactic treatment strategy in response to complex commensal-host dynamics.


Subject(s)
Bioengineering , Vaccines , Animals , Antigens/immunology , Biotechnology , Disease Progression , Female , Humans , Immunity, Innate , Immunogenicity, Vaccine , Mice , Pneumococcal Infections/epidemiology , Pneumococcal Infections/immunology , Pneumococcal Infections/microbiology , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines/immunology , Prevalence , Serogroup , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL
...