Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biophys Chem ; 300: 107050, 2023 09.
Article in English | MEDLINE | ID: mdl-37327725

ABSTRACT

UV-light can cause photodimerization and hence damages in DNA. Most frequent are cyclobutane pyrimidine dimer (CPD) damages, which predominantly form at TpT (thymine-thymine) steps. It is well known that CPD damage probability is different for single-stranded or double stranded DNA and depends on the sequence context. However, DNA deformation due to packing in nucleosomes can also influence CPD formation. Quantum mechanical calculations and Molecular Dynamics simulations indicate little CPD damage probability for DNA's equilibrium structure. We find that DNA needs to be deformed in a specific way to allow the HOMO → LUMO transition required for CPD damage formation. The simulation studies further show that the periodic CPD damage patterns measured in chromosomes and nucleosomes can be directly explained by the periodic deformation pattern of the DNA in the nucleosome complex. It supports previous findings on characteristic deformation patterns found in experimental nucleosome structures that relate to CPD damage formation. The result may have important implications for our understanding of UV-induced DNA mutations in human cancers.


Subject(s)
Nucleosomes , Pyrimidine Dimers , Humans , Pyrimidine Dimers/chemistry , Thymine/chemistry , DNA/chemistry , DNA Damage , Ultraviolet Rays , DNA Repair
2.
Biophys J ; 120(1): 101-108, 2021 01 05.
Article in English | MEDLINE | ID: mdl-33285115

ABSTRACT

DNA sequences in regulatory regions and in telomers at the ends of chromosomes frequently contain tandem repeats of guanine nucleotides that can form stacked structures stabilized by Hoogsten pairing and centrally bound monovalent cations. The replication and elongation of telomeres requires the disruption of these G-quadruplex structures. Hence, drug molecules such as gold (Au)-carbene that stabilize G-quadruplexes may also interfere with the elongation of telomeres and, in turn, could be used to control cell replication and growth. To better understand the molecular mechanism of Au-carbene binding to G-quadruplexes, we employed molecular dynamics simulations and free energy simulations. Whereas very restricted mobility of two Au-carbene ligands was found upon binding as a doublet to one side of the G-quadruplex, much larger translational and orientational mobility was observed for a single Au-carbene binding at the second G-quadruplex surface. Comparative simulations on duplex DNA in the presence of Au-carbene ligands indicates a preference for the minor groove and weaker unspecific and more salt-dependent binding than to the G-quadruplex surface. Analysis of energetic contributions reveals a dominance of nonpolar and van der Waals interactions to drive binding. The simulations can also be helpful for proposing possible modifications that could improve Au-carbene affinity and specificity for G-quadruplex binding.


Subject(s)
G-Quadruplexes , Molecular Dynamics Simulation , DNA , Gold , Ligands , Methane/analogs & derivatives , Telomere
SELECTION OF CITATIONS
SEARCH DETAIL
...