Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
G3 (Bethesda) ; 14(2)2024 02 07.
Article in English | MEDLINE | ID: mdl-38124496

ABSTRACT

During gene regulation, DNA accessibility is thought to limit the availability of transcription factor (TF) binding sites, while TFs can increase DNA accessibility to recruit additional factors that upregulate gene expression. Given this interplay, the causative regulatory events in the modulation of gene expression remain unknown for the vast majority of genes. We utilized deeply sequenced ATAC-Seq data and site-specific knock-in reporter genes to investigate the relationship between the binding-site resolution dynamics of DNA accessibility and the expression dynamics of the enhancers of Cebpa during macrophage-neutrophil differentiation. While the enhancers upregulate reporter expression during the earliest stages of differentiation, there is little corresponding increase in their total accessibility. Conversely, total accessibility peaks during the last stages of differentiation without any increase in enhancer activity. The accessibility of positions neighboring C/EBP-family TF binding sites, which indicates TF occupancy, does increase significantly during early differentiation, showing that the early upregulation of enhancer activity is driven by TF binding. These results imply that a generalized increase in DNA accessibility is not sufficient, and binding by enhancer-specific TFs is necessary, for the upregulation of gene expression. Additionally, high-coverage ATAC-Seq combined with time-series expression data can infer the sequence of regulatory events at binding-site resolution.


Subject(s)
Chromatin , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , DNA/genetics , DNA/metabolism , Enhancer Elements, Genetic , Cell Differentiation/genetics
2.
PLoS One ; 18(10): e0292317, 2023.
Article in English | MEDLINE | ID: mdl-37792708

ABSTRACT

Reporter assays, in which the expression of an inert protein is driven by gene regulatory elements such as promoters and enhancers, are a workhorse for investigating gene regulation. Techniques for measuring reporter gene expression vary from single-cell or single-molecule approaches having low throughput to bulk Luciferase assays that have high throughput. We developed a Luciferase Reporter Assay using Flow-Cytometry (LucFlow), which measures reporter expression in single cells immunostained for Luciferase. We optimized and tested LucFlow with a murine cell line that can be differentiated into neutrophils, into which promoter-reporter and enhancer-promoter-reporter constructs have been integrated in a site-specific manner. The single-cell measurements are comparable to bulk ones but we found that dead cells have no detectable Luciferase protein, so that bulk assays underestimate reporter expression. LucFlow is able to achieve a higher accuracy than bulk methods by excluding dead cells during flow cytometry. Prior to fixation and staining, the samples are spiked with stained cells that can be discriminated during flow cytometry and control for tube-to-tube variation in experimental conditions. Computing fold change relative to control cells allows LucFlow to achieve a high level of precision. LucFlow, therefore, enables the accurate and precise measurement of reporter expression in a high throughput manner.


Subject(s)
Gene Expression Regulation , Mice , Animals , Genes, Reporter , Luciferases/genetics , Luciferases/metabolism , Promoter Regions, Genetic , Cell Line
3.
bioRxiv ; 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37090616

ABSTRACT

The upregulation of gene expression by enhancers depends upon the interplay between the binding of sequence-specific transcription factors (TFs) and DNA accessibility. DNA accessibility is thought to limit the ability of TFs to bind to their sites, while TFs can increase accessibility to recruit additional factors that upregulate gene expression. Given this interplay, the causative regulatory events underlying the modulation of gene expression during cellular differentiation remain unknown for the vast majority of genes. We investigated the binding-site resolution dynamics of DNA accessibility and the expression dynamics of the enhancers of an important neutrophil gene, Cebpa, during macrophage-neutrophil differentiation. Reporter genes were integrated in a site-specific manner in PUER cells, which are progenitors that can be differentiated into neutrophils or macrophages in vitro by activating the pan-leukocyte TF PU.1. Time series data show that two enhancers upregulate reporter expression during the first 48 hours of neutrophil differentiation. Surprisingly, there is little or no increase in the total accessibility, measured by ATAC-Seq, of the enhancers during the same time period. Conversely, total accessibility peaks 96 hrs after PU.1 activation-consistent with its role as a pioneer-but the enhancers do not upregulate gene expression. Combining deeply sequenced ATAC-Seq data with a new bias-correction method allowed the profiling of accessibility at single-nucleotide resolution and revealed protected regions in the enhancers that match all previously characterized TF binding sites and ChIP-Seq data. Although the accessibility of most positions does not change during early differentiation, that of positions neighboring TF binding sites, an indicator of TF occupancy, did increase significantly. The localized accessibility changes are limited to nucleotides neighboring C/EBP-family TF binding sites, showing that the upregulation of enhancer activity during early differentiation is driven by C/EBP-family TF binding. These results show that increasing the total accessibility of enhancers is not sufficient for upregulating their activity and other events such as TF binding are necessary for upregulation. Also, TF binding can cause upregulation without a perceptible increase in total accessibility. Finally, this study demonstrates the feasibility of comprehensively mapping individual TF binding sites as footprints using high coverage ATAC-Seq and inferring the sequence of events in gene regulation by combining with time-series gene expression data.

SELECTION OF CITATIONS
SEARCH DETAIL
...