Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(8): e29564, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38665579

ABSTRACT

The contemporary agricultural supply chain necessitates the integration of information and communication technologies to effectively mitigate the multifaceted challenges posed by climate change and rising global demand for food products. Furthermore, recent developments in information and communication technologies, such as blockchain, big data analytics, the internet of things, artificial intelligence, cloud computing, etc., have made this transformation possible. Each of these technologies plays a particular role in enabling the agriculture supply chain ecosystem to be intelligent enough to handle today's world's challenges. Thus, this paper reviews the crucial information and communication technologies-enabled agriculture supply chains to understand their potential uses and contemporary developments. The review is supported by 57 research papers from the Scopus database. Five research areas analyze the applications of the technology reviewed in the agriculture supply chain: food safety and traceability, security and information system management, wasting food, supervision and tracking, agricultural businesses and decision-making, and other applications not explicitly related to the agriculture supply chain. The study also emphasizes how information and communication technologies can help agriculture supply chains and promote agriculture supply chain decarbonization. An information and communication technologies application framework for a decarbonized agriculture supply chain is suggested based on the research's findings. The framework identifies the contribution of information and communication technologies to decision-making in agriculture supply chains. The review also offers guidelines to academics, policymakers, and practitioners on managing agriculture supply chains successfully for enhanced agricultural productivity and decarbonization.

2.
J Biomol Struct Dyn ; 41(19): 10161-10170, 2023 11.
Article in English | MEDLINE | ID: mdl-36636828

ABSTRACT

Coronavirus family consist of a member known as SARS-CoV-2, spread drastically in 2019 (Covid-19), affecting millions of people worldwide. Till date there is no clear-clinical therapy or drug, targeted to cure this serious disease. Researches are going on to prevent this corona virus. Here, we tried to explore a novel SARS-CoV-2 papain-like protease as a potential inhibitor. Finally, eugenol was docked with this protease to find prime SARS-inhibitors. In silico studies revealed that eugenol binds to the active site of SARS-CoV-2 papain-like protease with appropriate binding. Moreover, the MD simulation for 100 ns and MMPBSA calculation reveals that eugenol possess potential phytotherapeutic properties against COVID-19. The interaction of eugenol with human serum albumin has been examined by using fluorescence, UV-vis spectroscopy, circular dichroism as well as computational techniques such as molecular docking, molecular dynamic simulation and MMPBSA calculation. Overall investigation shows eugenol having good affinity for HSA Ka 6.80 × 106 M-1.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Humans , Eugenol/pharmacology , Molecular Docking Simulation , SARS-CoV-2 , Circular Dichroism , Drug Discovery , Molecular Dynamics Simulation , Peptide Hydrolases , Protease Inhibitors/pharmacology
3.
PLoS One ; 17(6): e0268989, 2022.
Article in English | MEDLINE | ID: mdl-35679287

ABSTRACT

There is a dearth of literature that provides a bibliometric analysis concerning the role of Artificial Intelligence (AI) in sustainable agriculture therefore this study attempts to fill this research gap and provides evidence from the studies conducted between 2000-2021 in this field of research. The study is a systematic bibliographic analysis of the 465 previous articles and reviews done between 2000-2021 in relation to the utilization of AI in sustainable methods of agriculture. The results of the study have been visualized and presented using the VOSviewer and Biblioshiny visualizer software. The results obtained post analysis indicate that, the amount of academic works published in the field of AI's role in enabling sustainable agriculture increased significantly from 2018. Therefore, there is conclusive evidence that the growth trajectory shows a significant climb upwards. Geographically analysed, the country collaboration network highlights that most number of studies in the realm of this study originate from China, USA, India, Iran, France. The co-author network analysis results represent that there are multi-disciplinary collaborations and interactions between prominent authors from United States of America, China, United Kingdom and Germany. The final framework provided from this bibliometric study will help future researchers identify the key areas of interest in research of AI and sustainable agriculture and narrow down on the countries where prominent academic work is published to explore co-authorship opportunities.


Subject(s)
Artificial Intelligence , Bibliometrics , Agriculture , Authorship , Publications , United States
4.
PLoS One ; 17(5): e0264460, 2022.
Article in English | MEDLINE | ID: mdl-35617167

ABSTRACT

Interaction of thymol, carvacrol and linalool with fungal lipase and Human Serum Albumin (HSA) have been investigated employing UV-Vis spectroscopy Fluorescence and Circular dichroism spectroscopy (CD) along with docking studies. Thymol, carvacrol and linalool displayed approximately 50% inhibition at 1.5 mmol/litre concentrations using para-nitrophenyl palmitate (pNPP). UV-Vis spectroscopy give evidence of the formation of lipase-linalool, lipase-carvacrol and lipase-thymol complex at the ground state. Three molecules also showed complex formation with HSA at the ground state. Fluorescence spectroscopy shows strong binding of lipase to thymol (Ka of 2.6 x 109 M-1) as compared to carvacrol (4.66 x 107 M-1) and linalool (5.3 x 103 M-1). Number of binding sites showing stoichiometry of association process on lipase is found to be 2.52 (thymol) compared to 2.04 (carvacrol) and 1.12 (linalool). Secondary structure analysis by CD spectroscopy results, following 24 hours incubation at 25°C, with thymol, carvacrol and linalool revealed decrease in negative ellipticity for lipase indicating loss in helical structure as compared with the native protein. The lowering in negative ellipticity was in the order of thymol > carvacrol > linalool. Fluorescence spectra following binding of all three molecules with HSA caused blue shift which suggests the compaction of the HSA structure. Association constant of thymol and HSA is 9.6 x 108 M-1 which along with 'n' value of 2.41 suggests strong association and stable complex formation, association constant for carvacrol and linalool was in range of 107 and 103 respectively. Docking results give further insight into strong binding of thymol, carvacrol and linalool with lipase having free energy of binding as -7.1 kcal/mol, -5.0 kcal/mol and -5.2 kcal/mol respectively. To conclude, fungal lipases can be attractive target for controlling their growth and pathogenicity. Employing UV-Vis, Fluorescence and Circular dichroism spectroscopy we have shown that thymol, carvacrol and linalool strongly bind and disrupt structure of fungal lipase, these three phytochemicals also bind well with HSA. Based on disruption of lipase structure and its binding nature with HSA, we concluded thymol as a best anti-lipase molecule among three molecules tested. Results of Fluorescence and CD spectroscopy taken together suggests that thymol and carvacrol are profound disrupter of lipase structure.


Subject(s)
Lipase , Thymol , Binding Sites , Circular Dichroism , Humans , Molecular Docking Simulation , Protein Binding , Serum Albumin, Human/chemistry , Spectrometry, Fluorescence , Thermodynamics , Thymol/pharmacology
5.
J Nanosci Nanotechnol ; 20(6): 3770-3779, 2020 06 01.
Article in English | MEDLINE | ID: mdl-31748075

ABSTRACT

This paper reports the attempt to develop an efficient heterostructure photocatalyst by employing SrZrO3 as ferroelectric substrate with deposited nanostructured CdS semiconductor on the surface. Primarily bare SrZrO3 and CdS nanoparticles were synthesized by using polymeric citrate precursor and co-precipitation routes, respectively. The chemical deposition technique was used to develop the CdS over the surface of the pre-synthesized SrZrO3 nanoparticles. The synthesized bare nanoparticles and their heterostructure were characterized by XRD which shows the formation of orthorhombic and face centred cubic (FCC) phases of SrZrO3 and CdS, respectively. TEM was used to estimate the morphology and particle size of as-synthesized nanoparticles, which shows the average particle size of 14, 24 and 25 nm for SrZrO3, CdS and SrZrO3/CdS, respectively. The BET surface area of SrZrO3, CdS and SrZrO3/CdS samples was found to be 299, 304 and 312 m2/g respectively. Methylene blue was used as model pollutant to determine the photocatalytic activity of the synthesized nanomaterials. The heterostructure shows an enhanced activity as compared to bare nanoparticles. Dielectric constant and dielectric loss of the nanoparticles was investigated as a function of frequency at room temperature and as a function of temperature at 500 kHz. The room temperature dielectric constant for SrZrO3, CdS and SrZrO3/CdS was found to be 13.2, 17.8 and 25.5 respectively at 100 kHz.

6.
Protein Pept Lett ; 26(12): 919-929, 2019.
Article in English | MEDLINE | ID: mdl-31057096

ABSTRACT

BACKGROUND: Fungal lipase dependent processes are important for their pathogenicity. Lipases can therefore be explored as direct target of promising herbal antifungals. OBJECTIVE: We explored Aspergillus niger lipase as a direct target of eugenol through spectroscopic techniques and compare results with Bovine Serum Albumin and lysozyme to comment on selectivity of eugenol towards lipase. METHODS: In vitro activity assays of lipase are used to determine concentration ranges. UV-Visible, Fluorescence and Circular dichroism spectroscopy were employed to determine binding constant, stoichiometric binding sites and structural changes in Lipase, BSA and lysozyme following incubation with varying concentrations of eugenol. RESULTS: In activity assays 50% inhibition of lipase was obtained at 0.913 mmoles/litre eugenol. UV-vis spectroscopy shows formation of lipase-eugenol, Bovine Serum Albumin-eugenol and lysozyme-eugenol complex well below this concentration of eugenol. Eugenol binding caused blue shift with Bovine Serum Albumin and lysozyme suggestive of compaction, and red shift with lipase. Negative ellipticity decreased with lipase but increased with Bovine Serum Albumineugenol and lysozyme-eugenol complexes suggesting loss of helical structure for lipase and compaction for Bovine Serum Albumin and lysozyme. Binding of eugenol to lipase was strong (Ka= 4.7 x 106 M-1) as compared to Bovine Serum Albumin and lysozyme. The number of stoichiometric eugenol binding sites on lipase was found to be 2 as compared to 1.37 (Bovine Serum Albumin) and 0.32 (lysozyme). Docking results also suggest strong binding of eugenol with lipase followed by Bovine Serum Albumin and lysozyme. CONCLUSION: Eugenol is found to be effective inhibitor and disruptor of secondary and tertiary structure of lipase, whereas its binding to Bovine Serum Albumin and lysozyme is found to be weak and less disruptive of structures suggesting selectivity of eugenol towards lipase.


Subject(s)
Eugenol/chemistry , Fungal Proteins/antagonists & inhibitors , Lipase/antagonists & inhibitors , Aspergillus niger/enzymology , Binding Sites , Fungal Proteins/chemistry , Lipase/chemistry , Molecular Docking Simulation , Muramidase/chemistry , Protein Binding , Protein Conformation , Serum Albumin, Bovine/chemistry , Spectrophotometry/methods , Substrate Specificity , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...