Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Res (Stuttg) ; 73(6): 309-317, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37040870

ABSTRACT

The receptor of Advanced Glycation Endproducts (RAGE) and Advanced Glycation Endproducts (AGE) have multiple functions in our body and their restraint are being observed in neurodegenerative and memory impairment disorders. The review of different pathways allows an understanding of the probable mechanism of neurodegeneration and memory impairment involving RAGE and AGE. Commonly we observe AGE accumulation in neural cells and tissues but the extent of accumulation increases with the presence of memory impairment disorder. The presence of AGEs can also be seen in morbid accumulation, pathological structures in the form of amyloid clots, and nervous fibrillary tangles in Alzheimer's Disease (AD) and memory impairment disease.Many neuropathological and biochemical aspects of AD are explained by AGEs, including widespread protein crosslinking, glial activation of oxidative stress, and neuronal cell death. Oxidative stress is due to different reasons and glycation end products set in motion and form or define various actions which are normally due to AGE changes in a pathogenic cascade. By regulating the transit of ß-amyloid in and out of the brain or altering inflammatory pathways, AGE and it's ensnare receptor such as soluble RAGE may function as blockage or shield AD development. RAGE activates the transcription-controlling factor Necrosis Factor (NF-κB) and increases the protraction of cytokines, like a higher number of Tumor Necrosis Factor (TNF-α) and Interleukin (IL-I) by inducing several signal transduction cascades. Furthermore, binding to RAGE can pro-activate reactive oxygen species (ROS), which is popularly known to cause neuronal death.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Receptor for Advanced Glycation End Products/metabolism , Signal Transduction , Glycation End Products, Advanced/metabolism
2.
Drug Res (Stuttg) ; 72(2): 65-71, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34979574

ABSTRACT

It is well recognized that cyclic adenosine monophosphate (cAMP) signaling within neurons plays a key role in the foundation of long-term memories. Memory storage is the process that demands the movement of signals, neural plasticity, and the molecules which can transfer the signals from the sensory neuron to the dorsal root ganglion (DRG) neurons and later into the temporal region of the brain. The discovery of cAMP in 1958 as the second messenger also had a role in memory formation and other neural aspects. Further, in 1998 the scientists found that cAMP does not just activate protein kinase A (PKA) but also exchange protein directly activated by cAMP (Epac) which has an active role to play in hyperalgesia, memory, and signaling. The cAMP has three targets, hyperpolarization-activated cyclic nucleotide modulated (HCN) channels, protein kinase A (PKA), and exchange protein activated by cAMP (Epac). Different research has exposed that both PKA and HCN channels are significant for long-term memory creation. Epac is a cAMP-dependent guanine nucleotide exchange factor for the small G proteins including Rap1. However, slight information is there about the role of Epac in this process. The effects of cAMP are predominantly imparted by activating protein kinase A (PKA) and the more newly discovered exchange proteins are directly activated by cAMP 1 and 2 (EPAC1 and EPAC2). This review provides an insight regarding the function and role of both of these secondary messengers in memory and nerve signaling.


Subject(s)
Cyclic AMP-Dependent Protein Kinases , Cyclic AMP , Cyclic AMP-Dependent Protein Kinases/metabolism , Guanine Nucleotide Exchange Factors , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...