Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(12): e22879, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38125517

ABSTRACT

The Internet of Things (IoT), big data, and artificial intelligence (AI) are all key technologies that influence the formation and implementation of digital medical services. Building Internet of Medical Things (IoMT) systems that combine advanced sensors with AI-powered insights is critical for intelligent medical systems. This paper presents an IoMT framework for brain magnetic resonance imaging (MRI) analysis to lessen the unavoidable diagnosis and therapy faults that occur in human clinical settings for the accurate detection of cerebral microbleeds (CMBs). The problems in accurate CMB detection include that CMBs are tiny dots 5-10 mm in diameter; they are similar to healthy tissues and are exceedingly difficult to identify, necessitating specialist guidance in remote and underdeveloped medical centers. Secondly, in the existing studies, computer-aided diagnostic (CAD) systems are designed for accurate CMB detection, however, their proposed approaches consist of two stages. Potential candidate CMBs from the complete MRI image are selected in the first stage and then passed to the phase of false-positive reduction. These pre-and post-processing steps make it difficult to build a completely automated CAD system for CMB that can produce results without human intervention. Hence, as a key goal of this work, an end-to-end enhanced UNet-based model for effective CMB detection and segmentation for IoMT devices is proposed. The proposed system requires no pre-processing or post-processing steps for CMB segmentation, and no existing research localizes each CMB pixel from the complete MRI image input. The findings indicate that the suggested method outperforms in detecting CMBs in the presence of contrast variations and similarities with other normal tissues and yields a good dice score of 0.70, an accuracy of 99 %, as well as a false-positive rate of 0.002 %. © 2017 Elsevier Inc. All rights reserved.

2.
Sensors (Basel) ; 23(7)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37050607

ABSTRACT

Currently, Internet of medical things-based technologies provide a foundation for remote data collection and medical assistance for various diseases. Along with developments in computer vision, the application of Artificial Intelligence and Deep Learning in IOMT devices aids in the design of effective CAD systems for various diseases such as melanoma cancer even in the absence of experts. However, accurate segmentation of melanoma skin lesions from images by CAD systems is necessary to carry out an effective diagnosis. Nevertheless, the visual similarity between normal and melanoma lesions is very high, which leads to less accuracy of various traditional, parametric, and deep learning-based methods. Hence, as a solution to the challenge of accurate segmentation, we propose an advanced generative deep learning model called the Conditional Generative Adversarial Network (cGAN) for lesion segmentation. In the suggested technique, the generation of segmented images is conditional on dermoscopic images of skin lesions to generate accurate segmentation. We assessed the proposed model using three distinct datasets including DermQuest, DermIS, and ISCI2016, and attained optimal segmentation results of 99%, 97%, and 95% performance accuracy, respectively.


Subject(s)
Melanoma , Skin Diseases , Skin Neoplasms , Humans , Artificial Intelligence , Melanoma/diagnostic imaging , Skin Neoplasms/diagnostic imaging , Skin Neoplasms/pathology , Neural Networks, Computer , Image Processing, Computer-Assisted/methods
3.
Comput Intell Neurosci ; 2022: 5112375, 2022.
Article in English | MEDLINE | ID: mdl-35449734

ABSTRACT

Data redundancy or fusion is one of the common issues associated with the resource-constrained networks such as Wireless Sensor Networks (WSNs) and Internet of Things (IoTs). To resolve this issue, numerous data aggregation or fusion schemes have been presented in the literature. Generally, it is used to decrease the size of the collected data and, thus, improve the performance of the underlined IoTs in terms of congestion control, data accuracy, and lifetime. However, these approaches do not consider neighborhood information of the devices (cluster head in this case) in the data refinement phase. In this paper, a smart and intelligent neighborhood-enabled data aggregation scheme is presented where every device (cluster head) is bounded to refine the collected data before sending it to the concerned server module. For this purpose, the proposed data aggregation scheme is divided into two phases: (i) identification of neighboring nodes, which is based on the MAC address and location, and (ii) data aggregation using k-mean clustering algorithm and Support Vector Machine (SVM). Furthermore, every CH is smart enough to compare data sets of neighboring nodes only; that is, data of nonneighbor is not compared at all. These algorithms were implemented in Network Simulator 2 (NS-2) and were evaluated in terms of various performance metrics, such as the ratio of data redundancy, lifetime, and energy efficiency. Simulation results have verified that the proposed scheme performance is better than the existing approaches.


Subject(s)
Computer Communication Networks , Wireless Technology , Cluster Analysis , Internet , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...