Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neuroimmune Pharmacol ; 11(1): 153-67, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26556034

ABSTRACT

Multiple Sclerosis (MS) therapies approved so far are unable to effectively reverse the chronic phase of the disease or improve the remyelination process. Here our aim is to evaluate the effects of C-Phycocyanin (C-Pc), a biliprotein from Spirulina platensis with anti-oxidant, anti-inflammatory and cytoprotective properties, in a chronic model of experimental autoimmune encephalomyelitis (EAE) in mice. C-Pc (2, 4 or 8 mg/kg i.p.) or IFN-beta (2000 IU, s.c.) was administered daily once a day or every other day, respectively, starting at disease onset, which differ among EAE mice between 11 and 15 days postinduction. Histological and immunohistochemistry (anti-Mac-3, anti-CD3 and anti-APP) assessments were performed in spinal cord in the postinduction time. Global gene expression in the brain was analyzed with the Illumina Mouse WG-6_V2 BeadChip microarray and the expression of particular genes, assessed by qPCR using the Fast SYBR Green RT-PCR Master Mix. Oxidative stress parameters (malondialdehyde, peroxidation potential, CAT/SOD ratio and GSH) were determined spectrophoto-metrically. Results showed that C-Pc ameliorates the clinical deterioration of animals, an effect that expresses the reduction of the inflammatory infiltrates invading the spinal cord tissue, the axonal preservation and the down-regulation of IL-17 expression in brain tissue and serum. C-Pc and IFN-beta improved the redox status in mice subjected to EAE, while microarray analysis showed that both treatments shared a common subset of differentially expressed genes, although they also differentially modulated another subset of genes. Specifically, C-Pc mainly modulated the expression of genes related to remyelination, gliogenesis and axon-glia processes. Taken together, our results indicate that C-Pc has significant therapeutic effects against EAE, mediated by the dynamic regulation of multiple biological processes.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Encephalomyelitis, Autoimmune, Experimental/pathology , Interferon-beta/pharmacology , Nerve Regeneration/drug effects , Phycocyanin/pharmacology , Animals , Brain/drug effects , Brain/pathology , Female , Gene Expression/drug effects , Immunohistochemistry , Mice , Mice, Inbred C57BL , Neuroprotective Agents/pharmacology , Oligonucleotide Array Sequence Analysis , Oxidative Stress/drug effects , Real-Time Polymerase Chain Reaction , Spinal Cord/drug effects , Spinal Cord/pathology
2.
Toxicol Appl Pharmacol ; 272(1): 49-60, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23732081

ABSTRACT

Since the inflammatory response and oxidative stress are involved in the stroke cascade, we evaluated here the effects of Phycocyanobilin (PCB, the C-Phycocyanin linked tetrapyrrole) on PC12 cell survival, the gene expression and the oxidative status of hypoperfused rat brain. After the permanent bilateral common carotid arteries occlusion (BCCAo), the animals were treated with saline or PCB, taking samples 24h post-surgery. Global gene expression was analyzed with GeneChip Rat Gene ST 1.1 from Affymetrix; the expression of particular genes was assessed by the Fast SYBR Green RT-PCR Master Mix and Bioplex methods; and redox markers (MDA, PP, CAT, SOD) were evaluated spectrophotometrically. The PCB treatment prevented the H2O2 and glutamate induced PC12 cell injury assessed by the MTT assay, and modulated 190 genes (93 up- and 97 down-regulated) associated to several immunological and inflammatory processes in BCCAo rats. Furthermore, PCB positively modulated 19 genes mostly related to a detrimental pro-inflammatory environment and counteracted the oxidative imbalance in the treated BCCAo animals. Our results support the view of an effective influence of PCB on major inflammatory mediators in acute cerebral hypoperfusion. These results suggest that PCB has a potential to be a treatment for ischemic stroke for which further studies are needed.


Subject(s)
Cell Survival/drug effects , Cerebrovascular Disorders/drug therapy , Genes, MHC Class II/drug effects , Inflammation/genetics , Oxidative Stress/drug effects , Phycobilins/pharmacology , Phycocyanin/pharmacology , Animals , Biomarkers/metabolism , Brain Chemistry/drug effects , Brain Chemistry/genetics , Cerebrovascular Disorders/physiopathology , Coloring Agents , Cytokines/biosynthesis , Glutamic Acid/metabolism , Hydrogen Peroxide/pharmacology , Male , Microarray Analysis , Oxidation-Reduction , PC12 Cells , Phycobilins/isolation & purification , Phycocyanin/isolation & purification , Rats , Rats, Wistar , Real-Time Polymerase Chain Reaction , Spirulina/chemistry , Tetrazolium Salts , Thiazoles , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...