Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Life (Basel) ; 14(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38929743

ABSTRACT

High-quality echocardiogram images are the cornerstone of accurate and reliable measurements of the heart. Therefore, this study aimed to develop, validate and compare machine learning and deep learning algorithms for accurate and automated assessment of transthoracic echocardiogram image quality. In total, 4090 single-frame two-dimensional transthoracic echocardiogram images were used from apical 4-chamber, apical 2-chamber and parasternal long-axis views sampled from 3530 adult patients. The data were extracted from CAMUS and Unity Imaging open-source datasets. For every raw image, additional grayscale block histograms were developed. For block histogram datasets, six classic machine learning algorithms were tested. Moreover, convolutional neural networks based on the pre-trained EfficientNetB4 architecture were developed for raw image datasets. Classic machine learning algorithms predicted image quality with 0.74 to 0.92 accuracy (AUC 0.81 to 0.96), whereas convolutional neural networks achieved between 0.74 and 0.89 prediction accuracy (AUC 0.79 to 0.95). Both approaches are accurate methods of echocardiogram image quality assessment. Moreover, this study is a proof of concept of a novel method of training classic machine learning algorithms on block histograms calculated from raw images. Automated echocardiogram image quality assessment methods may provide additional relevant information to the echocardiographer in daily clinical practice and improve reliability in clinical decision making.

2.
Heart Fail Rev ; 29(1): 133-150, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37861853

ABSTRACT

The aim of the presented review is to summarize the literature data on the accuracy and clinical applicability of artificial intelligence (AI) models as a valuable alternative to the current guidelines in predicting cardiac resynchronization therapy (CRT) response and phenotyping of patients eligible for CRT implantation. This systematic review was performed according to the PRISMA guidelines. After a search of Scopus, PubMed, Cochrane Library, and Embase databases, 675 records were identified. Twenty supervised (prediction of CRT response) and 9 unsupervised (clustering and phenotyping) AI models were analyzed qualitatively (22 studies, 14,258 patients). Fifty-five percent of AI models were based on retrospective studies. Unsupervised AI models were able to identify clusters of patients with significantly different rates of primary outcome events (death, heart failure event). In comparison to the guideline-based CRT response prediction accuracy of 70%, supervised AI models trained on cohorts with > 100 patients achieved up to 85% accuracy and an AUC of 0.86 in their prediction of response to CRT for echocardiographic and clinical outcomes, respectively. AI models seem to be an accurate and clinically applicable tool in phenotyping of patients eligible for CRT implantation and predicting potential responders. In the future, AI may help to increase CRT response rates to over 80% and improve clinical decision-making and prognosis of the patients, including reduction of mortality rates. However, these findings must be validated in randomized controlled trials.


Subject(s)
Cardiac Resynchronization Therapy , Heart Failure , Humans , Cardiac Resynchronization Therapy/adverse effects , Artificial Intelligence , Retrospective Studies , Prognosis , Echocardiography , Heart Failure/etiology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...