Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 11(25): 22481-22491, 2019 Jun 26.
Article in English | MEDLINE | ID: mdl-31141332

ABSTRACT

One of the very challenging aspects of Li-S battery development is the fabrication of a sulfur electrode with high areal loading using conventional Li-ion binders. Herein, we report a new multifunctional polymeric binder, synthesized by the free-radical cross-linking polymerization of [2-(acryloyloxy)ethyl]trimethylammonium chloride (AETMAC) and ethylene glycol diacrylate (EGDA) to form poly(AETMAC- co-EGDA), that not only helps to confine the soluble polysulfide species but also has the desired mechanical properties to allow stable cycling of high-sulfur loading cathodes. Through a combination of spectroscopic and electrochemical studies, we elucidate the chemical interactions that inhibit polysulfide shuttling. We also show that extensive cross-linkage enables this polymeric binder to exhibit a low degree of swelling as well as high tensile modulus and toughness. These attributes are essential to maintain the architectural integrity of the sulfur cathode during extended cycling. Using this material, Li-S cells with a high-sulfur loading (6.0 mg cm-2) and a low-intermediate electrolyte/sulfur ratio (7 µL:1 mg) achieve an areal capacity of 5.4 mA h cm-2 and can be (dis)charged for 300 cycles with stable reversible redox behavior after the initial cycles.

2.
Science ; 361(6404): 777-781, 2018 08 24.
Article in English | MEDLINE | ID: mdl-30139868

ABSTRACT

Lithium-oxygen (Li-O2) batteries have attracted much attention owing to the high theoretical energy density afforded by the two-electron reduction of O2 to lithium peroxide (Li2O2). We report an inorganic-electrolyte Li-O2 cell that cycles at an elevated temperature via highly reversible four-electron redox to form crystalline lithium oxide (Li2O). It relies on a bifunctional metal oxide host that catalyzes O-O bond cleavage on discharge, yielding a high capacity of 11 milliampere-hours per square centimeter, and O2 evolution on charge with very low overpotential. Online mass spectrometry and chemical quantification confirm that oxidation of Li2O involves transfer of exactly 4 e-/O2 This work shows that Li-O2 electrochemistry is not intrinsically limited once problems of electrolyte, superoxide, and cathode host are overcome and that coulombic efficiency close to 100% can be achieved.

3.
ACS Cent Sci ; 2(8): 560-8, 2016 Aug 24.
Article in English | MEDLINE | ID: mdl-27610417

ABSTRACT

A comprehensive experimental and theoretical analysis of the isothermal transport of species for the two model ternary-electrolytes with LiTFSI-Li2S4/dioxolane (DOL)-dimethoxyethane (DME) and LiTFSI-Li2S6/DOL-DME formulations is presented. An unambiguous picture of the polysulfide's mobility is set forth after a detailed investigation of the macroscopic transference number and diffusion coefficients. The new findings of incongruent diffusion for Li2S4 species and high significance of cross-term diffusion coefficients reformulate a fledgling view of the prevalent redox-shuttle phenomena. The practical implications of this complex mechanism are discussed in detail.

4.
Nat Commun ; 5: 4759, 2014 Aug 26.
Article in English | MEDLINE | ID: mdl-25154399

ABSTRACT

The lithium-sulphur battery relies on the reversible conversion between sulphur and Li2S and is highly appealing for energy storage owing to its low cost and high energy density. Porous carbons are typically used as sulfur hosts, but they do not adsorb the hydrophilic polysulphide intermediates or adhere well to Li2S, resulting in pronounced capacity fading. Here we report a different strategy based on an inherently polar, high surface area metallic oxide cathode host and show that it mitigates polysulphide dissolution by forming an excellent interface with Li2S. Complementary physical and electrochemical probes demonstrate strong polysulphide/Li2S binding with this 'sulphiphilic' host and provide experimental evidence for surface-mediated redox chemistry. In a lithium-sulphur cell, Ti4O7/S cathodes provide a discharge capacity of 1,070 mAh g(-1) at intermediate rates and a doubling in capacity retention with respect to a typical conductive carbon electrode, at practical sulphur mass fractions up to 70 wt%. Stable cycling performance is demonstrated at high rates over 500 cycles.

5.
J Phys Chem Lett ; 5(20): 3486-91, 2014 Oct 16.
Article in English | MEDLINE | ID: mdl-26278597

ABSTRACT

A comprehensive and general kinetic model is developed for the oxygen reduction reaction in aprotic Li-O2 cells. The model is based on the competitive uptake of lithium superoxide by the surface and solution. A demonstrative kinetic study is provided to demystify the origin of curvature in Tafel plots as well as the current dependency and aberrant diversity of the nature and morphology of discharge products in these systems. Our results are general and extend to any system where solubilization of superoxide is favored, such as where phase-transfer catalysts play an important role.

6.
Phys Chem Chem Phys ; 13(11): 5171-7, 2011 Mar 21.
Article in English | MEDLINE | ID: mdl-21298154

ABSTRACT

Here we report the observation of electron delocalization in nano-dimension xLiFePO(4):(1 - x)FePO(4) (x = 0.5) using high temperature, static, (31)P solid state NMR. The (31)P paramagnetic shift in this material shows extreme sensitivity to the oxidation state of the Fe center. At room temperature two distinct (31)P resonances arising from FePO(4) and LiFePO(4) are observed at 5800 ppm and 3800 ppm, respectively. At temperatures near 400 °C these resonances coalesce into a single narrowed peak centered around 3200 ppm caused by the averaging of the electronic environments at the phosphate centers, resulting from the delocalization of the electrons among the iron centers. (7)Li MAS NMR spectra of nanometre sized xLiFePO(4):(1 - x)FePO(4) (x = 0.5) particles at ambient temperature reveal evidence of Li residing at the phase interface between the LiFePO(4) and FePO(4) domains. Moreover, a new broad resonance is resolved at 65 ppm, and is attributed to Li adjacent to the anti-site Fe defect. This information is considered in light of the (7)Li MAS spectrum of LiMnPO(4), which despite being iso-structural with LiFePO(4) yields a remarkably different (7)Li MAS spectrum due to the different electronic states of the paramagnetic centers. For LiMnPO(4) the higher (7)Li MAS paramagnetic shift (65 ppm) and narrowed isotropic resonance (FWHM ≈ 500 Hz) is attributed to an additional unpaired electron in the t(2g) orbital as compared to LiFePO(4) which has δ(iso) = -11 ppm and a FWHM = 9500 Hz. Only the delithiated phase FePO(4) is iso-electronic and iso-structural with LiMnPO(4). This similarity is readily observed in the (7)Li MAS spectrum of xLiFePO(4):(1 - x)FePO(4) (x = 0.5) where Li sitting near Fe in the 3+ oxidation state takes on spectral features reminiscent of LiMnPO(4). Overall, these spectral features allow for better understanding of the chemical and electrochemical (de)lithiation mechanisms of LiFePO(4) and the Li-environments generated upon cycling.

7.
Chem Commun (Camb) ; 46(10): 1658-60, 2010 Mar 14.
Article in English | MEDLINE | ID: mdl-20177607

ABSTRACT

Solid sulfur was completely infiltrated into the channels of mesoporous carbon nanorods in an aqueous medium at room temperature by vigorous stirring. The C-S nanocomposite exhibits ultra-fast Pt sorption, even in extremely dilute solutions.

8.
Nat Mater ; 6(10): 749-53, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17828278

ABSTRACT

In the search for new positive-electrode materials for lithium-ion batteries, recent research has focused on nanostructured lithium transition-metal phosphates that exhibit desirable properties such as high energy storage capacity combined with electrochemical stability. Only one member of this class--the olivine LiFePO(4) (ref. 3)--has risen to prominence so far, owing to its other characteristics, which include low cost, low environmental impact and safety. These are critical for large-capacity systems such as plug-in hybrid electric vehicles. Nonetheless, olivine has some inherent shortcomings, including one-dimensional lithium-ion transport and a two-phase redox reaction that together limit the mobility of the phase boundary. Thus, nanocrystallites are key to enable fast rate behaviour. It has also been suggested that the long-term economic viability of large-scale Li-ion energy storage systems could be ultimately limited by global lithium reserves, although this remains speculative at present. (Current proven world reserves should be sufficient for the hybrid electric vehicle market, although plug-in hybrid electric vehicle and electric vehicle expansion would put considerable strain on resources and hence cost effectiveness.) Here, we report on a sodium/lithium iron phosphate, A(2)FePO(4)F (A=Na, Li), that could serve as a cathode in either Li-ion or Na-ion cells. Furthermore, it possesses facile two-dimensional pathways for Li+ transport, and the structural changes on reduction-oxidation are minimal. This results in a volume change of only 3.7% that--unlike the olivine--contributes to the absence of distinct two-phase behaviour during redox, and a reversible capacity that is 85% of theoretical.

9.
Faraday Discuss ; 134: 119-41; discussion 215-33, 415-9, 2007.
Article in English | MEDLINE | ID: mdl-17326565

ABSTRACT

Lithium metal phosphates are amongst the most promising cathode materials for high capacity lithium-ion batteries. Owing to their inherently low electronic conductivity, it is essential to optimize their properties to minimize defect concentration and crystallite size (down to the submicron level), control morphology, and to decorate the crystallite surfaces with conductive nanostructures that act as conduits to deliver electrons to the bulk lattice. Here, we discuss factors relating to doping and defects in olivine phosphates LiMPO4 (M = Fe, Mn, Co, Ni) and describe methods by which in situ nanophase composites with conductivities ranging from 10(-4)-10(-2) S cm(-1) can be prepared. These utilize surface reactivity to produce intergranular nitrides, phosphides, and/or phosphocarbides at temperatures as low as 600 degrees C that maximize the accessibility of the bulk for Li de/insertion. Surface modification can only address the transport problem in part, however. A key issue in these materials is also to unravel the factors governing ion and electron transport within the lattice. Lithium de/insertion in the phosphates is accompanied by two-phase transitions owing to poor solubility of the single phase compositions, where low mobility of the phase boundary limits the rate characteristics. Here we discuss concerted mobility of the charge carriers. Using Mössbauer spectroscopy to pinpoint the temperature at which the solid solution forms, we directly probe small polaron hopping in the solid solution Li(x)FePO4 phases formed at elevated temperature, and give evidence for a strong correlation between electron and lithium delocalization events that suggests they are coupled.

10.
J Phys Chem B ; 110(45): 22732-5, 2006 Nov 16.
Article in English | MEDLINE | ID: mdl-17092023

ABSTRACT

The lithium-storage material Li(0.6)FePO(4) was studied by inelastic neutron scattering and differential scanning calorimetry. Li(0.6)FePO(4) undergoes a transformation from a two-phase mixture (heterosite and triphylite) to a disordered solid-solution at 200 degrees C. Phonon densities of states (DOS) obtained from the inelastic neutron scattering were similar for the two-phase sample measured at 180 degrees C and the disordered sample measured at 220 degrees C. The vibrational entropy of transformation is 1.8 +/-0.9 J/(K mol), which is smaller than the configurational entropy difference of approximately 3.1 J/(K mol). The measured enthalpy of the disordering transition was estimated as 2.5 kJ/mol. The phonon data show a small change in lattice dynamics upon disordering.

11.
J Am Chem Soc ; 128(35): 11416-22, 2006 Sep 06.
Article in English | MEDLINE | ID: mdl-16939264

ABSTRACT

Transition metal phosphates such as LiFePO(4) have been recognized as very promising electrodes for lithium-ion batteries because of their energy storage capacity combined with electrochemical and thermal stability. A key issue in these materials is to unravel the factors governing electron and ion transport within the lattice. Lithium extraction from LiFePO(4) results in a two-phase mixture with FePO(4) that limits the power characteristics owing to the low mobility of the phase boundary. This boundary is a consequence of low solubility of the parent phases, and its mobility is impeded by slow migration of the charge carriers. In principle, these limitations could be diminished in a solid solution, Li(x)FePO(4). Here, we show that electron delocalization in the solid solution phases formed at elevated temperature is due to rapid small polaron hopping and is unrelated to consideration of the band gap. We give the first experimental evidence for a strong correlation between electron and lithium delocalization events that suggests they are coupled. Furthermore, the exquisite frequency sensitivity of Mössbauer measurements provides direct insight into the electron hopping rate.

12.
Nat Mater ; 3(3): 147-52, 2004 Mar.
Article in English | MEDLINE | ID: mdl-14991015

ABSTRACT

The provision of efficient electron and ion transport is a critical issue in an exciting new group of materials based on lithium metal phosphates that are important as cathodes for lithium-ion batteries. Much interest centres on olivine-type LiFePO(4), the most prominent member of this family. Whereas the one-dimensional lithium-ion mobility in this framework is high, the electronically insulating phosphate groups that benefit the voltage also isolate the redox centres within the lattice. The pristine compound is a very poor conductor (sigma approximately 10(-9) S cm(-1)), thus limiting its electrochemical response. One approach to overcome this is to include conductive phases, increasing its capacity to near-theoretical values. There have also been attempts to alter the inherent conductivity of the lattice by doping it with a supervalent ion. Compositions were reported to be black p-type semiconductors with conductivities of approximately 10(-2) S cm(-1) arising from minority Fe(3+) hole carriers. Our results for doped (and undoped) LiMPO(4) (M = Fe, Ni) show that a percolating nano-network of metal-rich phosphides are responsible for the enhanced conductivity. We believe our demonstration of non-carbonaceous-network grain-boundary conduction to be the first in these materials, and that it holds promise for other insulating phosphates.


Subject(s)
Electric Conductivity , Iron Compounds/chemistry , Magnesium Compounds/chemistry , Nanotechnology , Nickel/chemistry , Phosphates/chemistry , Silicates/chemistry , Microscopy, Electron , X-Ray Diffraction
13.
J Am Chem Soc ; 125(34): 10402-11, 2003 Aug 27.
Article in English | MEDLINE | ID: mdl-12926965

ABSTRACT

Monoclinic lithium vanadium phosphate, alpha-Li(3)V(2)(PO(4))(3), is a highly promising material proposed as a cathode for lithium-ion batteries. It possesses both good ion mobility and high lithium capacity because of its ability to reversibly extract all three lithium ions from the lattice. Here, using a combination of neutron diffraction and (7)Li MAS NMR studies, we are able to correlate the structural features in the series of single-phase materials Li(3-y)V(2)(PO(4))(3) with the electrochemical voltage-composition profile. A combination of charge ordering on the vanadium sites and lithium ordering/disordering among lattice sites is responsible for the features in the electrochemical curve, including the observed hysteresis. Importantly, this work highlights the importance of ion-ion interactions in determining phase transitions in these materials.

14.
Science ; 296(5575): 2012-5, 2002 Jun 14.
Article in English | MEDLINE | ID: mdl-12065832

ABSTRACT

We demonstrate low-potential intercalation of lithium in a solid-state metal phosphide. A topotactic first-order transition between different but related crystal structures at room temperature takes place by an electrochemical redox process: MnP4 <--> Li7MnP4. The P-P bonds in the MnP4 structure are cleaved at the time of Li insertion (reduction) to produce crystalline Li7MnP4 and are reformed after reoxidation to MnP4, thereby acting as an electron storage reservoir. This is an unusual example of facile covalent bond breaking within the crystalline solid state that can be reversed by the input of electrochemical energy.

15.
J Am Chem Soc ; 123(35): 8598-9, 2001 Sep 05.
Article in English | MEDLINE | ID: mdl-11525669
SELECTION OF CITATIONS
SEARCH DETAIL
...