Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(7): e0305143, 2024.
Article in English | MEDLINE | ID: mdl-39008505

ABSTRACT

Concrete structures are susceptible to cracking, which can compromise their integrity and durability. Repairing them with ordinary Portland cement (OPC) paste causes shrinkage cracks to appear in the repaired surface. Alkali-activated binders offer a promising solution for repairing such cracks. This study aims to develop an alkali-activated paste (AAP) and investigate its effectiveness in repairing concrete cracks. AAPs, featuring varying percentages (0.5%, 0.75%, 1%, 1.25%, 1.5%, and 1.75%) of polyethylene (PE) fibers, are found to exhibit characteristics such as strain hardening, multiple plane cracking in tension and flexure tests, and stress-strain softening in compression tests. AAP without PE fibers experienced catastrophic failure in tension and flexure, preventing the determination of its stress-strain relationship. Notably, AAPs with 1.25% PE fibers demonstrated the highest tensile and flexural strength, exceeding that of 0.5% PE fiber reinforced AAP by 100% in tension and 70% in flexure. While 1% PE fibers resulted in the highest compressive strength, surpassing AAP without fibers by 17%. To evaluate the repair performance of AAP, OPC cubes were cast with pre-formed cracks. These cracks were induced by placing steel plates during casting and were designed to be full and half-length with widths of 1.5 mm and 3 mm. AAP both with and without PE fibers led to a substantial improvement in compressive strength, reducing the initial strength loss of 30%-50% before repair to a diminished range of 2%-20% post-repair. The impact of PE fiber content on the compressive strength of repaired OPC cube is marginal, providing more flexibility in using AAP with any fiber percentage while still achieving effective concrete crack repair. Considering economic and environmental factors, along with observed mechanical enhancements, AAPs show promising potential for widespread use in concrete repair and related applications, contributing valuable insights to the field of sustainable construction materials.


Subject(s)
Alkalies , Construction Materials , Materials Testing , Polyethylene , Polyethylene/chemistry , Alkalies/chemistry , Compressive Strength , Tensile Strength , Stress, Mechanical
2.
Materials (Basel) ; 15(21)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36363356

ABSTRACT

In recent decades, a variety of organizational sectors have demanded and researched green structural materials. Concrete is the most extensively used manmade material. Given the adverse environmental effect of cement manufacturing, research has focused on minimizing environmental impact and cement-based product costs. Metakaolin (MK) as an additive or partial cement replacement is a key subject of concrete research. Developing predictive machine learning (ML) models is crucial as environmental challenges rise. Since cement-based materials have few ML approaches, it is important to develop strategies to enhance their mechanical properties. This article analyses ML techniques for forecasting MK concrete compressive strength (fc'). Three different individual and ensemble ML predictive models are presented in detail, namely decision tree (DT), multilayer perceptron neural network (MLPNN), and random forest (RF), along with the most effective factors, allowing for efficient investigation and prediction of the fc' of MK concrete. The authors used a database of MK concrete mechanical features for model generalization, a key aspect of any prediction or simulation effort. The database includes 551 data points with relevant model parameters for computing MK concrete's fc'. The database contains cement, metakaolin, coarse and fine aggregate, water, silica fume, superplasticizer, and age, which affect concrete's fc' but were seldom considered critical input characteristics in the past. Finally, the performance of the models is assessed to pick and deploy the best predicted model for MK concrete mechanical characteristics. K-fold cross validation was employed to avoid overfitting issues of the models. Additionally, ML approaches were utilized to combine SHapley Additive exPlanations (SHAP) data to better understand the MK mix design non-linear behaviour and how each input parameter's weighting influences the total contribution. Results depict that DT AdaBoost and modified bagging are the best ML algorithms for predicting MK concrete fc' with R2 = 0.92. Moreover, according to SHAP analysis, age impacts MK concrete fc' the most, followed by coarse aggregate and superplasticizer. Silica fume affects MK concrete's fc' least. ML algorithms estimate MK concrete's mechanical characteristics to promote sustainability.

3.
Materials (Basel) ; 15(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36295407

ABSTRACT

This research employed machine learning (ML) and SHapley Additive ExPlanations (SHAP) methods to assess the strength and impact of raw ingredients of cement mortar (CM) incorporated with waste glass powder (WGP). The data required for this study were generated using an experimental approach. Two ML methods were employed, i.e., gradient boosting and random forest, for compressive strength (CS) and flexural strength (FS) estimation. The performance of ML approaches was evaluated by comparing the coefficient of determination (R2), statistical checks, k-fold assessment, and analyzing the variation between experimental and estimated strength. The results of the ML-based modeling approaches revealed that the gradient boosting model had a good degree of precision, but the random forest model predicted the strength of the WGP-based CM with a greater degree of precision for CS and FS prediction. The SHAP analysis revealed that fine aggregate was a critical raw material, with a stronger negative link to the strength of the material, whereas WGP and cement had a greater positive effect on the strength of CM. Utilizing such approaches will benefit the building sector by supporting the progress of rapid and inexpensive approaches for identifying material attributes and the impact of raw ingredients.

4.
Polymers (Basel) ; 14(17)2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36080752

ABSTRACT

A scientometric-based assessment of the literature on geopolymers was conducted in this study to determine its critical aspects. Typical review studies are restricted in their capability to link disparate segments of the literature in a systematic and exact way. Knowledge mapping, co-citation, and co-occurrence are very difficult components of creative research. This study adopted an advanced strategy of data mining, data processing and analysis, visualization and presentation, and interpretation of the bibliographic data on geopolymers. The Scopus database was used to search for and retrieve the data needed to complete the study's objectives. The relevant sources of publications, keyword assessment, productive authors based on publications and citations, top papers based on citations received, and areas actively engaged in the research of geopolymers are recognized during the data assessment. The VOSviewer (VOS: visualization of similarities) software application was employed to analyze the literature data comprising citation, bibliographic, abstract, keywords, funding, and other information from 7468 relevant publications. In addition, the applications and restrictions associated with the use of geopolymers in the construction sector are discussed, as well as possible solutions to overcome these restrictions. The scientometric analysis revealed that the leading publication source (journal) in terms of articles and citations is "Construction and building materials"; the mostly employed keywords are geopolymer, fly ash, and compressive strength; and the top active and contributing countries based on publications are China, India, and Australia. Because of the quantitative and graphical representation of participating nations and researchers, this study can help academics to create collaborative efforts and exchange creative ideas and approaches. In addition, this study concluded that the large-scale usage of geopolymer concrete is constrained by factors such as curing regime, activator solution scarcity and expense, efflorescence, and alkali-silica reaction. However, embracing the potential solutions outlined in this study might assist in boosting the building industry's adoption of geopolymer concrete.

5.
Materials (Basel) ; 15(15)2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35955144

ABSTRACT

Incorporating waste material, such as recycled coarse aggregate concrete (RCAC), into construction material can reduce environmental pollution. It is also well-known that the inferior properties of recycled aggregates (RAs), when incorporated into concrete, can impact its mechanical properties, and it is necessary to evaluate the optimal performance. Accordingly, artificial intelligence has been used recently to evaluate the performance of concrete compressive behaviour for different types of construction material. Therefore, supervised machine learning techniques, i.e., DT-XG Boost, DT-Gradient Boosting, SVM-Bagging, and SVM-Adaboost, are executed in the current study to predict RCAC's compressive strength. Additionally, SHapley Additive exPlanations (SHAP) analysis shows the influence of input parameters on the compressive strength of RCAC and the interactions between them. The correlation coefficient (R2), root mean square error (RMSE), and mean absolute error (MAE) are used to assess the model's performance. Subsequently, the k-fold cross-validation method is executed to validate the model's performance. The R2 value of 0.98 from DT-Gradient Boosting supersedes those of the other methods, i.e., DT- XG Boost, SVM-Bagging, and SVM-Adaboost. The DT-Gradient Boosting model, with a higher R2 value and lower error (i.e., MAE, RMSE) values, had a better performance than the other ensemble techniques. The application of machine learning techniques for the prediction of concrete properties would consume fewer resources and take less time and effort for scholars in the respective engineering field. The forecasting of the proposed DT-Gradient Boosting models is in close agreement with the actual experimental results, as indicated by the assessment output showing the improved estimation of RCAC's compressive strength.

6.
Polymers (Basel) ; 14(15)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35956580

ABSTRACT

Steel-fiber-reinforced concrete (SFRC) has been introduced as an effective alternative to conventional concrete in the construction sector. The incorporation of steel fibers into concrete provides a bridging mechanism to arrest cracks, improve the post-cracking behavior of concrete, and transfer stresses in concrete. Artificial intelligence (AI) approaches are in use nowadays to predict concrete properties to conserve time and money in the construction industry. Accordingly, this study aims to apply advanced and sophisticated machine-learning (ML) algorithms to predict SFRC compressive strength. In the current work, the applied ML approaches were gradient boosting, random forest, and XGBoost. The considered input variables were cement, fine aggregates (sand), coarse aggregates, water, silica fume, super-plasticizer, fly ash, steel fiber, fiber diameter, and fiber length. Previous studies have not addressed the effects of raw materials on compressive strength in considerable detail, leaving a research gap. The integration of a SHAP analysis with ML algorithms was also performed in this paper, addressing a current research need. A SHAP analysis is intended to provide an in-depth understanding of the SFRC mix design in terms of its strength factors via complicated, nonlinear behavior and the description of input factor contributions by assigning a weighing factor to each input component. The performances of all the algorithms were evaluated by applying statistical checks such as the determination coefficient (R2), the root mean square error (RMSE), and the mean absolute error (MAE). The random forest ML approach had a higher, i.e., 0.96, R2 value with fewer errors, producing higher precision than other models with lesser R2 values. The SFRC compressive strength could be anticipated by applying the random forest ML approach. Further, it was revealed from the SHapley Additive exPlanations (SHAP) analysis that cement content had the highest positive influence on the compressive strength of SFRC. In this way, the current study is beneficial for researchers to effectively and quickly evaluate SFRC compressive strength.

7.
Materials (Basel) ; 15(11)2022 May 24.
Article in English | MEDLINE | ID: mdl-35683062

ABSTRACT

The application of supplementary cementitious materials (SCMs) in concrete has been reported as the sustainable approach toward the appropriate development. This research aims to compare the result of compressive strength (C-S) obtained from the experimental method and results estimated by employing the various modeling techniques for the fly-ash-based concrete. Although this study covers two aspects, an experimental approach and modeling techniques for predictions, the emphasis of this research is on the application of modeling methods. The physical and chemical properties of the cement and fly ash, water absorption and specific gravity of the aggregate used, surface area of the cement, and gradation of the aggregate were analyzed in the laboratory. The four predictive machine learning (PML) algorithms, such as decision tree (DT), multi-linear perceptron (MLP), random forest (RF), and bagging regressor (BR), were investigated to anticipate the C-S of concrete. Results reveal that the RF model was observed more exact in investigating the C-S of concrete containing fly ash (FA), as opposed to other employed PML techniques. The high R2 value (0.96) for the RF model indicates the high precision level for forecasting the required output as compared to DT, MLP, and BR model R2 results equal 0.88, 0.90, and 0.93, respectively. The statistical results and cross-validation (C-V) method also confirm the high predictive accuracy of the RF model. The highest contribution level of the cement towards the prediction was also reported in the sensitivity analysis and showed a 31.24% contribution. These PML methods can be effectively employed to anticipate the mechanical properties of concretes.

8.
Materials (Basel) ; 15(12)2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35744167

ABSTRACT

Recently, the high demand for marble stones has progressed in the construction industry, ultimately resulting in waste marble production. Thus, environmental degradation is unavoidable because of waste generated from quarry drilling, cutting, and blasting methods. Marble waste is produced in an enormous amount in the form of odd blocks and unwanted rock fragments. Absence of a systematic way to dispose of these marble waste massive mounds results in environmental pollution and landfills. To reduce this risk, an effort has been made for the incorporation of waste marble powder into concrete for sustainable construction. Different proportions of marble powder are considered as a partial substitute in concrete. A total of 40 mixes are prepared. The effectiveness of marble in concrete is assessed by comparing the compressive strength with the plain mix. Supervised machine learning algorithms, bagging (Bg), random forest (RF), AdaBoost (AdB), and decision tree (DT) are used in this study to forecast the compressive strength of waste marble powder concrete. The models' performance is evaluated using correlation coefficient (R2), root mean square error, and mean absolute error and mean square error. The achieved performance is then validated by using the k-fold cross-validation technique. The RF model, having an R2 value of 0.97, has more accurate prediction results than Bg, AdB, and DT models. The higher R2 values and lesser error (RMSE, MAE, and MSE) values are the indicators for better performance of RF model among all individual and ensemble models. The implementation of machine learning techniques for predicting the mechanical properties of concrete would be a practical addition to the civil engineering domain by saving effort, resources, and time.

9.
Materials (Basel) ; 15(12)2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35744356

ABSTRACT

Sustainable concrete is gaining in popularity as a result of research into waste materials, such as recycled aggregate (RA). This strategy not only protects the environment, but also meets the demand for concrete materials. Using advanced artificial intelligence (AI) approaches, this study anticipates the split tensile strength (STS) of concrete samples incorporating RA. Three machine-learning techniques, artificial neural network (ANN), decision tree (DT), and random forest (RF), were examined for the specified database. The results suggest that the RF model shows high precision compared with the DT and ANN models at predicting the STS of RA-based concrete. The high value of the coefficient of determination and the low error values of the mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE) provided significant evidence for the accuracy and precision of the RF model. Furthermore, statistical tests and the k-fold cross-validation technique were used to validate the models. The importance of the input parameters and their contribution levels was also investigated using sensitivity analysis and SHAP analysis.

10.
Nanomaterials (Basel) ; 12(12)2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35745327

ABSTRACT

Several review studies have been performed on nano-silica-modified concrete, but this study adopted a new method based on scientometric analysis for the keywords' assessment in the current research area. A scientometric analysis can deal with vast bibliometric data using a software tool to evaluate the diverse features of the literature. Typical review studies are limited in their ability to comprehensively and accurately link divergent areas of the literature. Based on the analysis of keywords, this study highlighted and described the most significant segments in the research of nano-silica-modified concrete. The challenges associated with using nano-silica were identified, and future research is directed. Moreover, prediction models were developed using data from the literature for the strength estimation of nano-silica-modified concrete. It was noted that the application of nano-silica in cement-based composites is beneficial when used up to an optimal dosage of 2-3% due to high pozzolanic reactivity and a filler effect, whereas a higher dosage of nano-silica has a detrimental influence due to the increased porosity and microcracking caused by the agglomeration of nano-silica particles. The mechanical strength might enhance by 20-25% when NS is incorporated in the optimal amount. The prediction models developed for predicting the strength of nano-silica-modified concrete exhibited good agreement with experimental data due to lower error values. This type of analysis may be used to estimate the essential properties of a material, therefore saving time and money on experimental tests. It is recommended to investigate cost-effective methods for the dispersion of nano-silica in higher concentrations in cement mixes; further in-depth studies are required to develop more accurate prediction models to predict nano-silica-modified concrete properties.

11.
Polymers (Basel) ; 14(12)2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35746085

ABSTRACT

Geopolymers might be the superlative alternative to conventional cement because it is produced from aluminosilicate-rich waste sources to eliminate the issues associated with its manufacture and use. Geopolymer composites (GPCs) are gaining popularity, and their research is expanding. However, casting, curing, and testing specimens requires significant effort, price, and time. For research to be efficient, it is essential to apply novel approaches to the said objective. In this study, compressive strength (CS) of GPCs was anticipated using machine learning (ML) approaches, i.e., one single method (support vector machine (SVM)) and two ensembled algorithms (gradient boosting (GB) and extreme gradient boosting (XGB)). All models' validity and comparability were tested using the coefficient of determination (R2), statistical tests, and k-fold analysis. In addition, a model-independent post hoc approach known as SHapley Additive exPlanations (SHAP) was employed to investigate the impact of input factors on the CS of GPCs. In predicting the CS of GPCs, it was observed that ensembled ML strategies performed better than the single ML technique. The R2 for the SVM, GB, and XGB models were 0.98, 0.97, and 0.93, respectively. The lowered error values of the models, including mean absolute and root mean square errors, further verified the enhanced precision of the ensembled ML approaches. The SHAP analysis revealed a stronger positive correlation between GGBS and GPC's CS. The effects of NaOH molarity, NaOH, and Na2SiO3 were also observed as more positive. Fly ash and gravel size: 10/20 mm have both beneficial and negative impacts on the GPC's CS. Raising the concentration of these ingredients enhances the CS, whereas increasing the concentration of GPC reduces it. Gravel size: 4/10 mm has less favorable and more negative effects. ML techniques will benefit the construction sector by offering rapid and cost-efficient solutions for assessing material characteristics.

SELECTION OF CITATIONS
SEARCH DETAIL
...