Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
2.
Ann Bot ; 132(3): 523-540, 2023 11 23.
Article in English | MEDLINE | ID: mdl-37642427

ABSTRACT

BACKGROUND AND AIMS: In eastern Neotropical South America, the Cerrado, a large savanna vegetation, and the Atlantic Forest harbour high biodiversity levels, and their habitats are rather different from each other. The biomes have intrinsic evolutionary relationships, with high lineage exchange that can be attributed, in part, to a large contact zone between them. The genomic study of ecotypes, i.e. populations adapted to divergent habitats, can be a model to study the genomic signatures of ecological divergence. Here, we investigated two ecotypes of the tree Plathymenia reticulata, one from the Cerrado and the other from the Atlantic Forest, which have a hybrid zone in the ecotonal zone of Atlantic Forest-Cerrado. METHODS: The ecotypes were sampled in the two biomes and their ecotone. The evolutionary history of the divergence of the species was analysed with double-digest restriction site-associated DNA sequencing. The genetic structure and the genotypic composition of the hybrid zone were determined. Genotype-association analyses were performed, and the loci under putative selection and their functions were investigated. KEY RESULTS: High divergence between the two ecotypes was found, and only early-generation hybrids were found in the hybrid zone, suggesting a partial reproductive barrier. Ancient introgression between the Cerrado and Atlantic Forest was not detected. The soil and climate were associated with genetic divergence in Plathymenia ecotypes and outlier loci were found to be associated with the stress response, with stomatal and root development and with reproduction. CONCLUSIONS: The high genomic, ecological and morphophysiological divergence between ecotypes, coupled with partial reproductive isolation, indicate that the ecotypes represent two species and should be managed as different evolutionary lineages. We advise that the forest species should be re-evaluated and restated as vulnerable. Our results provide insights into the genomic mechanisms underlying the diversification of species across savanna and forest habitats and the evolutionary forces acting in the species diversification in the Neotropics.


Subject(s)
Grassland , Trees , Trees/genetics , Forests , Ecosystem , Genomics , Genetics, Population
3.
Mol Biol Rep ; 48(3): 3027-3030, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33755851

ABSTRACT

The endemic tree species Calyptranthes clusiifolia (Myrtaceae) plays a relevant ecological role in the forest fragments where it has a common occurrence. In this study, we reported the development of microsatellite markers for C. clusiifolia what will allow a better understanding of the relationship between the forest fragmentation process and the genetic structure and diversity of tree populations. Seven microsatellite markers were developed using an enriched genomic library and characterized in 30 individuals (from three populations). These seven loci were polymorphic and resulted in a total of 23 alleles. The expected heterozygosity (HE) varied from 0.14 (Caly 06) to 0.73 (Caly 22). Linkage disequilibrium between the loci (p > 0.0007) pairs was not detected. The parentage exclusion power of the first (Pe-1) and the second (Pe-2) parents were 0.6099 and 0.8548, respectively. The microsatellite markers developed are indicated for future studies of the genetic diversity in natural populations of C. clusiifolia.


Subject(s)
Microsatellite Repeats/genetics , Myrtaceae/genetics , Alleles , Genetic Loci , Polymorphism, Genetic
4.
Sci Total Environ ; 768: 144899, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33736351

ABSTRACT

Tropical plant species are vulnerable to climate change and global warming. Since flowering is a critical factor for plant reproduction and seed-set, warming and elevated atmospheric carbon dioxide concentrations (eCO2) are crucial climate change factors that can affect plant reproductive dynamics and flowering related events in the tropics. Using a combined free-air CO2 enrichment and a free-air temperature-controlled enhancement system, we investigate how warming (+2 °C above ambient, eT) and elevated [CO2] (~600 ppm, eCO2) affect the phenological pattern, plant-insect interactions, and outcrossing rates in the tropical legume forage species Stylosanthes capitata Vogel (Fabaceae). In comparison to the control, a significantly greater number of flowers (NF) per plot (+62%) were observed in eT. Furthermore, in warmed plots flowers began opening approximately 1 h earlier (~09:05), with a canopy temperature of ~23 °C, than the control (~09:59) and eCO2 (~09:55) treatments. Flower closure occurred about 3 h later in eT (~11:57) and control (~13:13), with a canopy temperature of ~27 °C. These changes in flower phenology increased the availability of floral resources and attractiveness for pollinators such as Apis mellifera L. and visitors such as Paratrigona lineata L., with significant interactions between eT treatments and insect visitation per hour/day, especially between 09:00-10:40. In comparison to the control, the additive effects of combined eCO2 + eT enhanced the NF by 137%, while the number of A. mellifera floral visits per plot/week increased by 83% during the period of greatest flower production. Although we found no significant effect of treatments on mating system parameters, the overall mean multilocus outcrossing rate (tm = 0.53 ± 0.03) did confirm that S. capitata has a mixed mating system. The effects of elevated [CO2] and warming on plant-pollinator relationships observed here may have important implications for seed production of tropical forage species in future climate scenarios.


Subject(s)
Carbon Dioxide , Reproduction , Animals , Bees , Climate Change , Flowers , Insecta , Pollination
5.
Biol Res ; 53(1): 30, 2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32635942

ABSTRACT

BACKGROUND: We developed simple sequence repeats (SSR) for Eremanthus erythropappus (DC.) MacLeish, an endangered tree species endemic to the Brazilian Savanna and Atlantic Forest biomes, and tested their transferability to two closely related Eremanthus species. RESULTS: Using a genomic library enriched with tandem repeat motifs, we identified 16 primer pairs, and characterized them in two populations. Nine primers amplified the expected size fragments and seven SSRs were polymorphic, providing a total of 38 alleles and an average of 4.22 alleles per marker. The polymorphic information content (PIC) ranged from 0.44 to 0.94 with an average of 0.65. The average observed heterozygosity across all loci varied from 0.61 to 1.00. The observed (HO) and expected (HE) heterozygosity within the two populations varied from 0.65 to 1.00 and from 0.31 to 1.00, respectively. CONCLUSIONS: These newly developed SSR markers are a powerful tool for population genetic analyses and may be useful in studies on species ecology, evolution, and taxonomy.


Subject(s)
Asteraceae , Endangered Species , Microsatellite Repeats , Alleles , Asteraceae/genetics , Brazil , Microsatellite Repeats/genetics
6.
Ecol Evol ; 10(11): 4562-4569, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32551043

ABSTRACT

Pseudolaelia is a genus endemic to the eastern Brazilian Atlantic Forest, consisting of 12 accepted species. Some Pseudolaelia species, such as P. vellozicola, P. aguadocensis, P. oliveirana, and P. regentii, referred to here as the PV complex, present extensive intra- and interpopulation morphological polymorphism, raising uncertainty regarding their circumscriptions. Although previous morphological analyses were used to solve the generic boundaries in the PV complex, persuasive genetic evidence is lacking. In order to test the hypothesis that the group under investigation contains only one taxon, amplification profiles of five intersimple sequence repeat (ISSR) markers were used to evaluate genetic diversity, genetic structure, and the relationships among the PV complex species. A total of 134 reproductive individuals were sampled in eight insular populations. Intrapopulation genetic analysis indicated low levels of genetic diversity. Analysis of genetic structure revealed that each of the eight sample locations can be considered unique biological populations as they are highly differentiated from each other. The Mantel test showed a high and positive correlation between genetic and geographic distance (r = .841, p < .002), indicating isolation by distance. The results are consistent with that expected for plants with insular geographical distribution. When testing for the null hypothesis, the low levels of genetic variation among species (F CT = 0.155) suggest that the populations constitute only one highly polymorphic species with a wide distribution.

7.
Ecol Evol ; 7(13): 4704-4716, 2017 07.
Article in English | MEDLINE | ID: mdl-28690800

ABSTRACT

Here, we explore the historical and contemporaneous patterns of connectivity among Encholirium horridum populations located on granitic inselbergs in an Ocbil landscape within the Brazilian Atlantic Forest, using both nuclear and chloroplast microsatellite markers. Beyond to assess the E. horridum population genetic structure, we built species distribution models across four periods (current conditions, mid-Holocene, Last Glacial Maximum [LGM], and Last Interglacial) and inferred putative dispersal corridors using a least-cost path analysis to elucidate biogeographic patterns. Overall, high and significant genetic divergence was estimated among populations for both nuclear and plastid DNA (ΦST(n) = 0.463 and ΦST(plastid) = 0.961, respectively, p < .001). For nuclear genome, almost total absence of genetic admixture among populations and very low migration rates were evident, corroborating with the very low estimates of immigration and emigration rates observed among E. horridum populations. Based on the cpDNA results, putative dispersal routes in Sugar Loaf Land across cycles of climatic fluctuations in the Quaternary period revealed that the populations' connectivity changed little during those events. Genetic analyses highlighted the low genetic connectivity and long-term persistence of populations, and the founder effect and genetic drift seemed to have been very important processes that shaped the current diversity and genetic structure observed in both genomes. The genetic singularity of each population clearly shows the need for in situ conservation of all of them.

9.
PLoS One ; 10(6): e0129930, 2015.
Article in English | MEDLINE | ID: mdl-26103589

ABSTRACT

Bignoniaceae is a Pantropical plant family that is especially abundant in the Neotropics. Members of the Bignoniaceae are diverse in many ecosystems and represent key components of the Tropical flora. Despite the ecological importance of the Bignoniaceae and all the efforts to reconstruct the phylogeny of this group, whole chloroplast genome information has not yet been reported for any members of the family. Here, we report the complete chloroplast genome sequence of Tanaecium tetragonolobum (Jacq.) L.G. Lohmann, which was reconstructed using de novo and referenced-based assembly of single-end reads generated by shotgun sequencing of total genomic DNA in an Illumina platform. The gene order and organization of the chloroplast genome of T. tetragonolobum exhibits the general structure of flowering plants, and is similar to other Lamiales chloroplast genomes. The chloroplast genome of T. tetragonolobum is a circular molecule of 153,776 base pairs (bp) with a quadripartite structure containing two single copy regions, a large single copy region (LSC, 84,612 bp) and a small single copy region (SSC, 17,586 bp) separated by inverted repeat regions (IRs, 25,789 bp). In addition, the chloroplast genome of T. tetragonolobum has 38.3% GC content and includes 121 genes, of which 86 are protein-coding, 31 are transfer RNA, and four are ribosomal RNA. The chloroplast genome of T. tetragonolobum presents a total of 47 tandem repeats and 347 simple sequence repeats (SSRs) with mononucleotides being the most common and di-, tri-, tetra-, and hexanucleotides occurring with less frequency. The results obtained here were compared to other chloroplast genomes of Lamiales available to date, providing new insight into the evolution of chloroplast genomes within Lamiales. Overall, the evolutionary rates of genes in Lamiales are lineage-, locus-, and region-specific, indicating that the evolutionary pattern of nucleotide substitution in chloroplast genomes of flowering plants is complex. The discovery of tandem repeats within T. tetragonolobum and the presence of divergent regions between chloroplast genomes of Lamiales provides the basis for the development of markers at various taxonomic levels. The newly developed markers have the potential to greatly improve the resolution of molecular phylogenies.


Subject(s)
Bignoniaceae/genetics , Chloroplasts/genetics , Genome, Plant , Organelles/metabolism
10.
J Hered ; 103(6): 842-52, 2012.
Article in English | MEDLINE | ID: mdl-23077230

ABSTRACT

The reproductive biology of the vulnerable palm species Butia eriospatha was studied to provide important information that contributes to our understanding and conservation of the species. In order to determine when and how B. erisopatha reproduces, we combined data from 7 nuclear microsatellite loci with ecological data on flowering and fruiting phenology collected between 2009 and 2011 from a population (N = 515) in the Atlantic Rainforest, Southern Brazil. Periods of flowering and fruit production were seasonal and variable across reproductive events. Mating system analyses indicate that B. eriospatha is a predominantly outcrossing species, ((m) = 0.961), since a certain degree of biparental inbreeding does occur. The species is self-compatible and reproduction may also occur by geitonogamy, indicating the ability of isolated populations to survive and persist. Open-pollinated seeds varied in relatedness, including mainly half-sibs and full-sibs. The effective population size was lower than that expected for panmictic populations. Hence, seeds for conservation programs must be collected from a large number of seed-trees to ensure an adequate effective population in the sample. The collection of germplasm is a high-priority strategy that should be employed to maintain the genetic variability that remains.


Subject(s)
Arecaceae/physiology , Flowers , Fruit , Microsatellite Repeats , Arecaceae/genetics , Brazil , Crosses, Genetic , Endangered Species , Flowers/genetics , Fruit/genetics , Genetic Variation , Pollination/genetics , Population Density , Seasons , Self-Incompatibility in Flowering Plants/genetics
11.
Genet Mol Biol ; 32(3): 568-71, 2009 Jul.
Article in English | MEDLINE | ID: mdl-21637521

ABSTRACT

Microsatellite markers were transferred and characterized for two Neotropical fig tree species, Ficus citrifolia and Ficus eximia. Our study demonstrated that microsatellite markers developed from different subgenera of Ficus can be transferred to related species. In the present case, 12 of the 15 primer pairs tested (80%) were successfully transferred to both of the above species. Eleven loci were polymorphic when tested across 60 F. citrifolia and 60 F. eximia individuals. For F. citrifolia, there were 4 to 15 alleles per locus, whereas expected heterozygosities ranged from 0.31 to 0.91. In the case of F. eximia, this was 2 to 12 alleles per locus and expected heterozygosities from 0.42 to 0.87.

12.
Genet. mol. biol ; 32(3): 568-571, 2009. tab
Article in English | LILACS | ID: lil-522326

ABSTRACT

Microsatellite markers were transferred and characterized for two Neotropical fig tree species, Ficus citrifolia and Ficus eximia. Our study demonstrated that microsatellite markers developed from different subgenera of Ficus can be transferred to related species. In the present case, 12 of the 15 primer pairs tested (80 percent) were successfully transferred to both of the above species. Eleven loci were polymorphic when tested across 60 F. citrifolia and 60 F. eximia individuals. For F. citrifolia, there were 4 to 15 alleles per locus, whereas expected heterozygosities ranged from 0.31 to 0.91. In the case of F. eximia, this was 2 to 12 alleles per locus and expected heterozygosities from 0.42 to 0.87.


Subject(s)
Ficus/genetics , Microsatellite Repeats , Alleles , Ecology , Polymorphism, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...