Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
ISME Commun ; 4(1): ycad018, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38371394

ABSTRACT

The three primary resistance-nodulation-cell division (RND) efflux pump families (heavy metal efflux [HME], nodulation factor exporter [NFE], and hydrophobe/amphiphile efflux-1 [HAE-1]) are almost exclusively found in Gram-negative bacteria and play a major role in resistance against metals and bacterial biocides, including antibiotics. Despite their significant societal interest, their evolutionary history and environmental functions are poorly understood. Here, we conducted a comprehensive phylogenetic and ecological study of the RND permease, the subunit responsible for the substrate specificity of these efflux pumps. From 920 representative genomes of Gram-negative bacteria, we identified 6205 genes encoding RND permeases with an average of 6.7 genes per genome. The HME family, which is involved in metal resistance, corresponds to a single clade (21.8% of all RND pumps), but the HAE-1 and NFE families had overlapping distributions among clades. We propose to restrict the HAE-1 family to two phylogenetic sister clades, representing 41.8% of all RND pumps and grouping most of the RND pumps involved in multidrug resistance. Metadata associated with genomes, analyses of previously published metagenomes, and quantitative Polymerase Chain Reaction (qPCR) analyses confirmed a significant increase in genes encoding HME permeases in metal-contaminated environments. Interestingly, and possibly related to their role in root colonization, genes encoding HAE-1 permeases were particularly abundant in the rhizosphere. In addition, we found that the genes encoding these HAE-1 permeases are significantly less abundant in marine environments, whereas permeases of a new proposed HAE-4 family are predominant in the genomes of marine strains. These findings emphasize the critical role of the RND pumps in bacterial resistance and adaptation to diverse ecological niches.

2.
Environ Sci Pollut Res Int ; 31(13): 19071-19084, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38372925

ABSTRACT

Polychlorinated biphenyls (PCBs) are persistent organic pollutants in the environment that are responsible for many adverse health effects. Bioremediation appears to be a healthy and cost-effective alternative for remediating PCB-contaminated environments. While some microbial species have been observed to be capable of transforming PCBs, only two different microbial pathways (rdh and bph pathways) have been described to be involved in PCB transformations. Ligninolytic enzymes have been observed or are under suspicion in some microbial PCB transformations. However, the role of these promising PCB-transforming enzymes, which are produced by fungi and some aerobic bacteria, is still unclear. The present review describes their role by identifying microbial PCB-transforming species and their reported ligninolytic enzymes whether proven or suspected to be involved in PCB transformations. There are several lines of evidence that ligninolytic enzymes are responsible for PCB transformations such as (1) the ability of purified laccases from Myceliophthora thermophila, Pycnoporus cinnabarinus, Trametes versicolor, Cladosporium sp, and Coprinus cumatus to transform hydroxy-PCBs; (2) the increased production of laccases and peroxidases by many fungi in the presence of PCBs; and (3) the enhanced PCB transformation by Pseudomonas stutzeri and Sinorhizobium meliloti NM after the addition of ligninolytic enzyme enhancers. However, if the involvement of ligninolytic enzymes in PCB transformation is clearly demonstrated in some fungal species, it does not seem to be implicated in all microbial species suggesting other still unknown metabolic pathways involved in PCB transformation and different from the bph and rdh pathways. Therefore, PCB transformation may involve several metabolic pathways, some involving ligninolytic enzymes, bph or rdh genes, and some still unknown, depending on the microbial species. In addition, current knowledge does not fully clarify the role of ligninolytic enzymes in PCB oxidation and dechlorination. Therefore, further studies focusing on purified ligninolytic enzymes are needed to clearly elucidate their role in PCB transformation.


Subject(s)
Polychlorinated Biphenyls , Polychlorinated Biphenyls/metabolism , Trametes/metabolism , Biodegradation, Environmental , Metabolic Networks and Pathways
3.
Microorganisms ; 11(8)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37630447

ABSTRACT

Causing major health and ecological disturbances, polychlorinated biphenyls (PCBs) are persistent organic pollutants still recovered all over the world. Microbial PCB biotransformation is a promising technique for depollution, but the involved molecular mechanisms remain misunderstood. Ligninolytic enzymes are suspected to be involved in many PCB transformations, but their assessments remain scarce. To further inventory the capabilities of microbes to transform PCBs through their ligninolytic enzymes, we investigated the role of oxidase and peroxidase among a set of microorganisms isolated from a historically PCB-contaminated site. Among 29 isolated fungi and 17 bacteria, this work reports for the first time the PCB-transforming capabilities from fungi affiliated to Didymella, Dothiora, Ilyonectria, Naganishia, Rhodoturula, Solicoccozyma, Thelebolus and Truncatella genera and bacteria affiliated to Peribacillus frigotolerans, Peribacillus muralis, Bacillus mycoides, Bacillus cereus, Bacillus toyonensis, Pseudarthrobacter sp., Pseudomonas chlororaphis, Erwinia aphidicola and Chryseobacterium defluvii. In the same way, this is the first report of fungal isolates affiliated to the Dothiora maculans specie and Cladosporium genus that displayed oxidase (putatively laccase) and peroxidase activity, respectively, enhanced in the presence of PCBs (more than 4-fold and 20-fold, respectively, compared to controls). Based on these results, the observed activities are suspected to be involved in PCB transformation.

4.
J Appl Microbiol ; 132(2): 933-948, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34333822

ABSTRACT

AIMS: We evaluated the activity of the preservative chlorphenesin and of four antimicrobial cosmetic multifunctional ingredients against various strains of gram-negative and gram-positive human opportunistic pathogens. METHODS AND RESULTS: Growth kinetics, modelling growth parameters and statistical analyses enabled comparing bacterial behaviour in the presence and in the absence of the compound. Whatever compound tested (i.e. chlorphenesin, phenylpropanol, hexanediol, ethylhexylglycerin, hydroxyacetophenone) and strain origin (i.e. clinical versus industrial), the growth of 42 strains belonging to Acinetobacter spp., Burkholderia cepacia complex and Stenotrophomonas maltophilia, was totally inhibited. On the opposite all of the P. aeruginosa strains (n = 13) as well as 4 and 6 out of 10 strains of Pluralibacter gergoviae grew in the presence of chlorphenesin and ethylhexylglycerin, respectively. Some P. gergoviae and Staphylococcus hominis strains withstand hydroxyacetophenone. Within a species, the different strains show variable latency phase, growth rate (r) and carrying capacity (K). They can be similar, lower or higher than those measured in control conditions. CONCLUSIONS: Data showed differences in the antimicrobial activity of compounds. Upon exposure, strains differed in their behaviour between and within species. Whatever species and strains, compound sensitivity could not be related to antibiotic resistance. SIGNIFICANCE AND IMPACT OF THE STUDY: Most multifunctional ingredients showed significant antimicrobial properties against the wide panel of species and strains evaluated. This will help adjusting preservation strategies in the cosmetic industry.


Subject(s)
Anti-Bacterial Agents , Chlorphenesin , Anti-Bacterial Agents/pharmacology , Enterobacter , Gram-Negative Bacteria , Humans , Microbial Sensitivity Tests , Preservatives, Pharmaceutical
5.
Environ Int ; 159: 107047, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34923370

ABSTRACT

Antimicrobial resistance (AMR) is a major global public health concern, shared by a large number of human and animal health actors. Within the framework of a One Health approach, actions should be implemented in the environmental realm, as well as the human and animal realms. The Government of France commissioned a report to provide policy and decision makers with an evidential basis for recommending or taking future actions to mitigate AMR in the environment. We first examined the mechanisms that underlie the emergence and persistence of antimicrobial resistance in the environment. This report drew up an inventory of the contamination of aquatic and terrestrial environments by AMR and antibiotics, anticipating that the findings will be representative of some other high-income countries. Effluents of wastewater treatment plants were identified as the major source of contamination on French territory, with spreading of organic waste products as a more diffuse and incidental contamination of aquatic environments. A limitation of this review is the heterogeneity of available data in space and time, as well as the lack of data for certain sources. Comparing the French Measured Environmental Concentrations (MECs) with predicted no effect concentrations (PNECs), fluoroquinolones and trimethoprim were identified as representing high and medium risk of favoring the selection of resistant bacteria in treated wastewater and in the most contaminated rivers. All other antibiotic molecules analyzed (erythromycin, clarithromycin, azithromycin, tetracycline) were at low risk of resistance selection in those environments. However, the heterogeneity of the data available impairs their full exploitation. Consequently, we listed indicators to survey AMR and antibiotics in the environment and recommended the harmonization of sampling strategies and endpoints for analyses. Finally, the objectives and methods used for the present work could comprise a useful example for how national authorities of countries sharing common socio-geographic characteristics with France could seek to better understand and define the environmental dimension of AMR in their particular settings.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Animals , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Drug Resistance, Bacterial/genetics , Rivers , Wastewater/analysis
6.
Environ Microbiol Rep ; 12(6): 702-711, 2020 12.
Article in English | MEDLINE | ID: mdl-32902135

ABSTRACT

Resistance-Nodulation-Division (RND) efflux pumps are relevant determinants of Stenotrophomonas maltophilia multidrug resistance as they can extrude a broad range of antibiotics and compounds involved in virulence and physiological functions. S. maltophilia, an environmental bacterium, was shown to be associated with amoebae and able to multiply inside them. To explore whether S. maltophilia RND efflux pumps play a role when interacting with amoebae, we evaluated the effect of amoebal culture and co-culture supernatants on the growth of S. maltophilia and the expression of sme efflux pump genes. Acanthamoeba castellanii and Willaertia magna were used as amoebal models and strain S. maltophilia BurE1 as bacterial one. Our data showed that both bacterial growth and sme gene expression were not modified by amoebal culture supernatants. On the contrary, co-culture supernatants negatively impacted the growth of BurE1 and induced the expression of three out of eight efflux pump genes, i.e. smeE, smeN and smeZ. Finally, we evidenced the production of A. castellanii secondary metabolites, putatively belonging to the diterpene family, in the amoebal supernatant and in the co-culture supernatant of A. castellanii and BurE1. Whether these compounds act directly as substrates of the efflux pumps and/or inducers of the sme genes need further investigations.


Subject(s)
Amoeba/metabolism , Bacterial Proteins/genetics , Culture Media/metabolism , Membrane Transport Proteins/genetics , Stenotrophomonas maltophilia/growth & development , Stenotrophomonas maltophilia/metabolism , Amoeba/chemistry , Amoeba/growth & development , Bacterial Proteins/metabolism , Coculture Techniques , Culture Media/chemistry , Membrane Transport Proteins/metabolism , Secondary Metabolism , Stenotrophomonas maltophilia/genetics
7.
J Glob Antimicrob Resist ; 19: 294-300, 2019 12.
Article in English | MEDLINE | ID: mdl-31100504

ABSTRACT

OBJECTIVES: This study examined the role of resistance-nodulation-cell division (RND) efflux pumps in resistance to first-generation and third-generation cephalosporins, and the potential contribution to increased virulence in two Vibrio isolates from the gut microbiota of a forage-feeder fish. METHODS: Phenotypic MIC testing was performed in the presence and absence of an RND efflux pump inhibitor, phenylalanine-arginine-beta-napthylamide (PAßN). Genomes of the two Vibrio spp. were compared to characterise RND efflux pump gene homologs. RESULTS: The study identified 13 and 12 RND operons, respectively, in Vibrio spp. T21 and T9, with Vibrio sp. T21 containing an additional RND operon compared with other V. parahaemolyticus strains. Both the inner-membrane protein (IMP) and the membrane facilitator protein (MFP) sequences of this operon were homologous to VexD and VexC, respectively, which is an RND operon in Vibrio cholerae. More generally, the other RND proteins in these strains showed homology to RND efflux pumps characterised in Escherichia coli and Vibrio cholerae. Decreased resistance to cefoperazone and cephradine was observed in Vibrio sp. T21, and to cefoperazone and cefsulodin in Vibrio sp. T9 in the presence of PaßN. The RND pumps may also mediate transport of kanamycin. CONCLUSIONS: By analysing the genomes of two Vibrio spp. isolated from the mummichog fish gut, RND efflux pump-mediated resistance to first-generation and third-generation cephalosporins was discovered in these strains. This work highlights the need for further research into this unique Vibrio spp. operon and, more generally, RND efflux pumps in Vibrio spp., as Vibrio spp. often cause seafood-borne illness.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Outer Membrane Proteins/genetics , Cephalosporins/pharmacology , Drug Resistance, Bacterial/genetics , Genome, Bacterial , Membrane Transport Proteins/genetics , Vibrio/genetics , Animals , Bacterial Proteins/genetics , Food Microbiology , Fundulidae/microbiology , Gastrointestinal Tract/microbiology , Microbial Sensitivity Tests , Operon , Vibrio/drug effects , Vibrio/pathogenicity , Virulence
8.
Mar Pollut Bull ; 135: 514-520, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30301067

ABSTRACT

Antibiotic resistance is a global public health issue and metal exposure can co-select for antibiotic resistance. We examined genome sequences of three multi-drug and metal resistant bacteria: one Shewanella sp., and two Vibrio spp., isolated from the gut of the mummichog fish (Fundulus heteroclitus). Our primary goal was to understand the mechanisms of co-selection. Phenotypically, the strains showed elevated resistance to arsenate, mercury, and various types of ß-lactams. The genomes contained genes of public health concern including one carbapenemase (blaOXA-48). Our analyses indicate that the co-selection phenotype is mediated by chromosomal resistance genes and cross-resistance. No evidence of co-resistance was found; most resistance genes were chromosomally located. Moreover, the identification of many efflux pump gene homologs indicates that cross-resistance and/or co-regulation may further contribute to resistance. We suggest that the mummichog gut microbiota may be a source of clinically relevant antibiotic resistance genes.


Subject(s)
Bacteria/genetics , Drug Resistance, Microbial/genetics , Fundulidae/microbiology , Gastrointestinal Tract/microbiology , Metals/pharmacology , Water Microbiology , Whole Genome Sequencing , Animals , Bacteria/drug effects , Genes, Bacterial
9.
Front Microbiol ; 9: 383, 2018.
Article in English | MEDLINE | ID: mdl-29559964

ABSTRACT

The Burkholderia cenocepacia epidemic ET12 lineage belongs to the genomovar IIIA including the reference strain J2315, a highly transmissible epidemic B. cenocepacia lineage. Members of this lineage are able to cause lung infections in immunocompromised and cystic fibrosis patients. In this study, we describe the genome of F01, an environmental B. cenocepacia strain isolated from soil in Burkina Faso that is, to our knowledge, the most closely related strain to this epidemic lineage. A comparative genomic analysis was performed on this new isolate, in association with five clinical and one environmental B. cenocepacia strains whose genomes were previously sequenced. Antibiotic resistances, virulence phenotype, and genomic contents were compared and discussed with an emphasis on virulent and antibiotic determinants. Surprisingly, no significant differences in antibiotic resistance and virulence were found between clinical and environmental strains, while the most important genomic differences were related to the number of prophages identified in their genomes. The ET12 lineage strains showed a noticeable greater number of prophages (partial or full-length), especially compared to the phylogenetically related environmental F01 strain (i.e., 5-6 and 3 prophages, respectively). Data obtained suggest possible involvements of prophages in the clinical success of opportunistic pathogens.

10.
PLoS One ; 13(2): e0192308, 2018.
Article in English | MEDLINE | ID: mdl-29401523

ABSTRACT

Stenotrophomonas maltophilia is found ubiquitously in the environment and is an important emerging nosocomial pathogen. S. maltophilia has been recently described as an Amoebae-Resistant Bacteria (ARB) that exists as part of the microbiome of various free-living amoebae (FLA) from waters. Co-culture approaches with Vermamoeba vermiformis demonstrated the ability of this bacterium to resist amoebal digestion. In the present study, we assessed the survival and growth of six environmental and one clinical S. maltophilia strains within two amoebal species: Acanthamoeba castellanii and Willaertia magna. We also evaluated bacterial virulence properties using the social amoeba Dictyostelium discoideum. A co-culture approach was carried out over 96 hours and the abundance of S. maltophilia cells was measured using quantitative PCR and culture approach. The presence of bacteria inside the amoeba was confirmed using confocal microscopy. Our results showed that some S. maltophilia strains were able to multiply within both amoebae and exhibited multiplication rates up to 17.5 and 1166 for A. castellanii and W. magna, respectively. In contrast, some strains were unable to multiply in either amoeba. Out of the six environmental S. maltophilia strains tested, one was found to be virulent. Surprisingly, this strain previously isolated from a soil amoeba, Micriamoeba, was unable to infect both amoebal species tested. We further performed an assay with a mutant strain of S. maltophilia BurA1 lacking the efflux pump ebyCAB gene and found the mutant to be more virulent and more efficient for intra-amoebal multiplication. Overall, the results obtained strongly indicated that free-living amoebae could be an important ecological niche for S. maltophilia.


Subject(s)
Amoeba/microbiology , Stenotrophomonas maltophilia/growth & development , Real-Time Polymerase Chain Reaction , Stenotrophomonas maltophilia/pathogenicity , Virulence
11.
Parasitol Res ; 116(11): 3151-3162, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28988383

ABSTRACT

Free-living amoebae (FLA) are ubiquitous protozoa found worldwide in the environment. They feed by phagocytosis on various microorganisms. However, some bacteria, i.e., amoebae-resistant bacteria (ARB) or bacterial endocytobionts, can resist phagocytosis and even multiply inside FLA. This study investigated the diversity of culturable FLA in various soils from agricultural and mining sites and their bacterial endocytobionts. FLA were cultured on non-nutrient agar with alive Escherichia coli and identified by PCR and sequencing. Amoebae were lysed and bacterial endocytobionts were cultured on TSA 1/10 and Drigalski medium. Bacterial isolates were identified by PCR and 16S rDNA sequencing and characterized for their antibiotic resistance properties. To measure bacterial virulence, the amoebal model Dictyostelium discoideum was used. The analysis of FLA diversity showed that Tetramitus was the most prevalent genus in agricultural soil from Burkina Faso (73%) and garden soil from Vietnam (42%) while Naegleria and Acanthamoeba were dominant genera in mining soil from Vietnam (55%) and French alpine soil (77%). Some genera were only present in one out of the four soils analyzed. The bacterial endocytobiont included Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. Human opportunistic pathogens identified as Pseudomonas aeruginosa, Stenotrophomonas maltophilia, and Burkholderia cepacia were found associated with amoebae including Micriamoeba, Tetramitus, Willaertia, or Acanthamoeba. Some of these bacteria showed various antibiotic resistance phenotypes and were virulent. Our study confirms that the occurrence of these opportunistic bacteria with FLA in soils may be important for the survival, multiplication, and spread of pathogens in the environment.


Subject(s)
Acanthamoeba/microbiology , Amoeba/microbiology , Dictyostelium/microbiology , Escherichia coli/growth & development , Naegleria/microbiology , Symbiosis/physiology , Acanthamoeba/classification , Agriculture , Amoeba/classification , Burkina Faso , Escherichia coli/genetics , Escherichia coli/isolation & purification , Humans , Naegleria/classification , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , Soil , Soil Microbiology , Vietnam
12.
Environ Sci Pollut Res Int ; 24(26): 20897-20907, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28721621

ABSTRACT

The expansion of invasive Japanese knotweed s.l. is of particular concern because of its aptitudes to rapidly colonize diverse environments, especially anthropized habitats generally characterized by their pollution with heavy metals. Whether the presence of heavy metals impacts the performance traits of this plant is a central question to better understand its invasive properties, though no controlled approach to assess these effects was yet reported. In this aim, we undertook greenhouse experiments where rhizome fragments of Japanese knotweed s.l. (Fallopia japonica and Fallopia × bohemica) were grown during 1 and 3 months, in a soil pot artificially polluted or not with heavy metals added in mixture (Cd, Cr, Pb, Zn). Our results showed that (i) the presence of heavy metals delayed rhizome regeneration and induced lowered plant part weights but did not affect plant height after 3 months; (ii) the effect of metals on the metabolic profiles of belowground part extracts was only detectable after 1 month and not after 3 months of growth, though it was possible to highlight the effect of metals independently of time and genotype for root extracts, and torosachrysone seemed to be the most induced compound; and (iii) the hybrid genotype tested was able to accumulate relatively high concentrations of metals, over or close to the highest reported ones for this plant for Cr, Cd and Zn, whereas Pb was not accumulated. These findings evidence that the presence of heavy metals in soil has a low impact on Fallopia sp. overall performance traits during rhizome regeneration, and has a rather stimulating effect on plant growth depending on pollution level.


Subject(s)
Fallopia japonica/metabolism , Metals, Heavy/metabolism , Soil Pollutants/metabolism , Environmental Pollution , Fallopia japonica/drug effects , Fallopia japonica/growth & development , Metals, Heavy/analysis , Soil , Soil Pollutants/toxicity
13.
Environ Sci Pollut Res Int ; 24(20): 16735-16750, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28567675

ABSTRACT

Plants adapt to metal stress by modifying their metabolism including the production of secondary metabolites in plant tissues. Such changes may impact the diversity and functions of plant associated microbial communities. Our study aimed to evaluate the influence of metals on the secondary metabolism of plants and the indirect impact on rhizosphere bacterial communities. We then compared the secondary metabolites of the hyperaccumulator Pteris vittata L. collected from a contaminated mining site to a non-contaminated site in Vietnam and identified the discriminant metabolites. Our data showed a significant increase in chlorogenic acid derivatives and A-type procyanidin in plant roots at the contaminated site. We hypothesized that the intensive production of these compounds could be part of the antioxidant defense mechanism in response to metals. In parallel, the structure and diversity of bulk soil and rhizosphere communities was studied using high-throughput sequencing. The results showed strong differences in bacterial composition, characterized by the dominance of Proteobacteria and Nitrospira in the contaminated bulk soil, and the enrichment of some potential human pathogens, i.e., Acinetobacter, Mycobacterium, and Cupriavidus in P. vittata's rhizosphere at the mining site. Overall, metal pollution modified the production of P. vittata secondary metabolites and altered the diversity and structure of bacterial communities. Further investigations are needed to understand whether the plant recruits specific bacteria to adapt to metal stress.


Subject(s)
Metals/toxicity , Pteris , Rhizosphere , Soil Pollutants/toxicity , Arsenic , Bacteria , Biodegradation, Environmental , Vietnam
14.
Appl Microbiol Biotechnol ; 100(24): 10597-10608, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27844142

ABSTRACT

Droplet digital PCR (ddPCR) allows absolute quantification and tolerance to inhibitors and has been proposed as the method of choice to overcome limitations of qPCR. The aim of this study was to evaluate ddPCR and qPCR performances to detect low copy number and copy number variation of antibiotic resistance genes (sul1 and qnrB genes encoding for resistance to sulfonamides and quinolones, respectively) using bacterial genomic DNA (gDNA) and metagenomic DNA extracted from soil and organic residue samples. With gDNA, qPCR showed a better range of quantification but the lower limit of quantification was at 15 copies of qnrB target vs. 1.6 in ddPCR. In the presence of background DNA or inhibitors, we observed a high loss of sensitivity in qPCR and an overestimation of target sequences. When using high amount of environmental DNA templates (70 ng per reaction), ddPCR was still allowing accurate quantification without adding PCR facilitator (i.e., T4 Gene 32 protein). Sensitivity to detect copy number variation was tenfold higher in ddPCR than in qPCR. Finally, the advantages of using ddPCR in environmental studies were confirmed with the quantification of sul1 and qnrB in soils, manures, or urban wastes.


Subject(s)
DNA, Bacterial/analysis , Drug Resistance, Bacterial , Genes, Bacterial , Polymerase Chain Reaction/methods , Soil Microbiology , Soil/chemistry , DNA, Bacterial/genetics , Gene Dosage , Sensitivity and Specificity
15.
Environ Sci Pollut Res Int ; 23(24): 25299-25311, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27696161

ABSTRACT

This study examined the long-term effects of the landfill disposal of untreated urban waste for soil fertilization on the prevalence and antibiotic resistance profiles of various human opportunistic pathogens in soils from Burkina Faso. Samples were collected at three sites in the periphery of Ouagadougou during two campaigns in 2008 and 2011. At each site, amendment led to changes in physico-chemical characteristics as shown by the increase in pH, CEC, total C, total N, and metal contents. Similarly, the numbers of total heterotrophic bacteria were higher in the amended fields than in the control ones. No sanitation indicators, i.e., coliforms, Staphylococci, and Enterococci, were detected. Pseudomonas aeruginosa and Burkholderia cepacia complex (Bcc) were detected at a low level in one amended field. Stenotrophomonas maltophilia was detected from both campaigns at the three sites in the amended fields and only once in an unamended field. Diversity analysis showed some opportunistic pathogen isolates to be closely related to reference clinical strains responsible for nosocomial- or community-acquired infections in Northern countries. Antibiotic resistance tests showed that P. aeruginosa and Bcc isolates had a wild-type phenotype and that most S. maltophilia isolates had a multi-drug resistance profile with resistance to 7 to 15 antibiotics. Then we were able to show that amendment led to an increase of some human opportunistic pathogens including multi-drug resistant isolates. Although the application of untreated urban waste increases both soil organic matter content and therefore soil fertility, the consequences of this practice on human health should be considered.


Subject(s)
Burkholderia cepacia/isolation & purification , Drug Resistance, Multiple, Bacterial , Pseudomonas aeruginosa/isolation & purification , Sewage , Soil Microbiology , Stenotrophomonas maltophilia/isolation & purification , Agriculture , Burkholderia cepacia/genetics , Burkina Faso , Drug Resistance, Microbial , Gram-Negative Bacteria , Humans , Pseudomonas aeruginosa/genetics , Soil/chemistry , Waste Disposal Facilities
16.
Genome Announc ; 4(4)2016 Aug 18.
Article in English | MEDLINE | ID: mdl-27540065

ABSTRACT

Stenotrophomonas maltophilia is a major opportunistic human pathogen responsible for nosocomial infections. Here, we report the draft genome sequences of Sm32COP, Sm41DVV, Sm46PAILV, SmF3, SmF22, SmSOFb1, and SmCVFa1, isolated from different manures in France, which provide insights into the genetic determinism of intrinsic or acquired antibiotic resistance in this species.

17.
Res Microbiol ; 167(4): 313-324, 2016 May.
Article in English | MEDLINE | ID: mdl-26774914

ABSTRACT

The occurrence of Stenotrophomonas maltophilia was monitored in organic amendments and agricultural soils from various sites in France and Tunisia. S. maltophilia was detected in horse and bovine manures, and its abundance ranged from 0.294 (±0.509) × 10(3) to 880 (±33.4) × 10(3) CFU (g drywt)(-1) of sample. S. maltophilia was recovered from most tested soil samples (104/124). Its abundance varied from 0.33 (±0.52) to 414 (±50) × 10(3) CFU (g drywt)(-1) of soil and was not related to soil characteristics. Antibiotic resistance properties of a set of environmental strains were compared to a clinical set, and revealed a high diversity of antibiotic resistance profiles, given both the numbers of resistance and the phenotypes. Manure strains showed resistance phenotypes, with most of the strains resisting between 7 and 9 antibiotics. While French soil strains were sensitive to most antibiotics tested, some Tunisian strains displayed resistance phenotypes close to those of clinical French strains. Screening for metal resistance among 66 soil strains showed a positive relationship between antibiotic and metal resistance. However, the prevalence of antibiotic resistance phenotypes in the studied sites was not related to the metal content in soil samples.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Soil Microbiology , Stenotrophomonas maltophilia/drug effects , Stenotrophomonas maltophilia/isolation & purification , Animals , Bacterial Load , Cattle , Colony Count, Microbial , France , Horses , Manure/microbiology , Metals/analysis , Metals/pharmacology , Microbial Sensitivity Tests , Soil/chemistry , Tunisia
18.
Genome Biol Evol ; 7(9): 2484-505, 2015 Aug 14.
Article in English | MEDLINE | ID: mdl-26276674

ABSTRACT

Stenotrophomonas maltophilia, a ubiquitous Gram-negative γ-proteobacterium, has emerged as an important opportunistic pathogen responsible for nosocomial infections. A major characteristic of clinical isolates is their high intrinsic or acquired antibiotic resistance level. The aim of this study was to decipher the genetic determinism of antibiotic resistance among strains from different origins (i.e., natural environment and clinical origin) showing various antibiotic resistance profiles. To this purpose, we selected three strains isolated from soil collected in France or Burkina Faso that showed contrasting antibiotic resistance profiles. After whole-genome sequencing, the phylogenetic relationships of these 3 strains and 11 strains with available genome sequences were determined. Results showed that a strain's phylogeny did not match their origin or antibiotic resistance profiles. Numerous antibiotic resistance coding genes and efflux pump operons were revealed by the genome analysis, with 57% of the identified genes not previously described. No major variation in the antibiotic resistance gene content was observed between strains irrespective of their origin and antibiotic resistance profiles. Although environmental strains generally carry as many multidrug resistant (MDR) efflux pumps as clinical strains, the absence of resistance-nodulation-division (RND) pumps (i.e., SmeABC) previously described to be specific to S. maltophilia was revealed in two environmental strains (BurA1 and PierC1). Furthermore the genome analysis of the environmental MDR strain BurA1 showed the absence of SmeABC but the presence of another putative MDR RND efflux pump, named EbyCAB on a genomic island probably acquired through horizontal gene transfer.


Subject(s)
Drug Resistance, Bacterial/genetics , Genome, Bacterial , Stenotrophomonas maltophilia/drug effects , Stenotrophomonas maltophilia/genetics , ATP-Binding Cassette Transporters/genetics , Bacterial Proteins/genetics , Environmental Microbiology , Fusaric Acid/metabolism , Genomics , Humans , Membrane Transport Proteins/genetics , Phylogeny , Stenotrophomonas maltophilia/classification , Stenotrophomonas maltophilia/isolation & purification
20.
Article in English | MEDLINE | ID: mdl-24809025

ABSTRACT

The occurrence of Pseudomonas aeruginosa was monitored at a broad spatial scale in French agricultural soils, from various soil types and under various land uses to evaluate the ability of soil to be a natural habitat for that species. To appreciate the impact of agricultural practices on the potential dispersion of P. aeruginosa, we further investigated the impact of organic amendment at experimental sites in France and Burkina Faso. A real-time quantitative PCR (qPCR) approach was used to analyze a set of 380 samples selected within the French RMQS ("Réseau de Mesures de la Qualité des Sols") soil library. In parallel, a culture-dependent approach was tested on a subset of samples. The results showed that P. aeruginosa was very rarely detected suggesting a sporadic presence of this bacterium in soils from France and Burkina Faso, whatever the structural and physico-chemical characteristics or climate. When we analyzed the impact of organic amendment on the prevalence of P. aeruginosa, we found that even if it was detectable in various manures (at levels from 10(3) to 10(5) CFU or DNA targets (g drywt)(-1) of sample), it was hardly ever detected in the corresponding soils, which raises questions about its survival. The only case reports were from a vineyard soil amended with a compost of mushroom manure in Burgundy, and a few samples from two fields amended with raw urban wastes in the sub-urban area of Ouagadougou, Burkina Faso. In these soils the levels of culturable cells were below 10 CFU (g drywt)(-1).


Subject(s)
Agriculture , Pseudomonas aeruginosa , Soil Microbiology , Soil/chemistry , Burkina Faso , France , Molecular Typing , Pseudomonas aeruginosa/classification , Pseudomonas aeruginosa/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...