Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(3)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36768770

ABSTRACT

Amongst per- and polyfluoroalkyl substances (PFAS) compounds, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) have a high persistence in physicochemical and biological degradation; therefore, the accumulation of PFOS and PFOA can negatively affect aquatic organisms and human health. In this study, two microalgae species (Chlorella vulgaris and Scenedesmus obliquus) were exposed to different concentrations of a PFOS and PFOA mixture (0 to 10 mg L-1). With increases in the contact time (days) and the PFAS concentration (mg L-1) from 1 to 7, and 0.5 to 10, respectively, the cell viability, total chlorophyll content, and protein content decreased, and the decrease in these parameters was significantly greater in Scenedesmus obliquus. As another step in the study, the response surface methodology (RSM) was used to optimize the toxicity effects of PFAS on microalgae in a logical way, as demonstrated by the high R2 (>0.9). In another stage, a molecular docking study was performed to monitor the interaction of PFOS and PFOA with the microalgae, considering hydrolysis and the enzymes involved in oxidation-reduction reactions using individual enzymes. The analysis was conducted on carboxypeptidase in Chlorella vulgaris and on c-terminal processing protease and oxidized cytochrome c6 in Scenedesmus obliquus. For the enzyme activity, the affinity and dimensions of ligands-binding sites and ligand-binding energy were estimated in each case.


Subject(s)
Alkanesulfonic Acids , Chlorella vulgaris , Fluorocarbons , Microalgae , Humans , Microalgae/metabolism , Chlorella vulgaris/metabolism , Molecular Docking Simulation , Fluorocarbons/toxicity , Fluorocarbons/metabolism , Caprylates/toxicity , Alkanesulfonic Acids/toxicity
2.
Pharmaceuticals (Basel) ; 14(12)2021 Dec 09.
Article in English | MEDLINE | ID: mdl-34959687

ABSTRACT

Epigenetic silencing of tumor suppressor genes (TSGs) plays an essential role in cancer pathogenesis, including acute myeloid leukemia (AML). All of SHP-1, SOCS-1, and SOCS-3 are TSGs that negatively regulate JAK/STAT signaling. Enhanced re-expression of TSGs through de-methylation represents a therapeutic target in several cancers. Thymoquinone (TQ) is a major component of Nigella sativa seeds with anticancer effects against several cancers. However, the effects of TQ on DNA methylation are not entirely understood. This study aimed to evaluate the ability of TQ to re-express SHP-1, SOCS-1, and SOCS-3 in MV4-11 AML cells through de-methylation. Cytotoxicity, apoptosis, and cell cycle assays were performed using WSTs-8 kit, Annexin V-FITC/PI apoptosis detection kit, and fluorometric-red cell cycle assay kit, respectively. The methylation of SHP-1, SOCS-1, and SOCS-3 was evaluated by pyrosequencing analysis. The expression of SHP-1, SOCS-1, SOCS-3, JAK2, STAT3, STAT5A, STAT5B, FLT3-ITD, DNMT1, DNMT3A, DNMT3B, TET2, and WT1 was assessed by RT-qPCR. The molecular docking of TQ to JAK2, STAT3, and STAT5 was evaluated. The results revealed that TQ significantly inhibited the growth of MV4-11 cells and induced apoptosis in a dose- and time-dependent manner. Interestingly, the results showed that TQ binds the active pocket of JAK2, STAT3, and STAT5 to inhibit their enzymatic activity and significantly enhances the re-expression of SHP-1 and SOCS-3 through de-methylation. In conclusion, TQ curbs MV4-11 cells by inhibiting the enzymatic activity of JAK/STAT signaling through hypomethylation and re-expression of JAK/STAT negative regulators and could be a promising therapeutic candidate for AML patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...