Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
J Hosp Infect ; 110: 89-96, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33453351

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has caused untold disruption throughout the world. Understanding the mechanisms for transmission of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is key to preventing further spread, but there is confusion over the meaning of 'airborne' whenever transmission is discussed. Scientific ambivalence originates from evidence published many years ago which has generated mythological beliefs that obscure current thinking. This article collates and explores some of the most commonly held dogmas on airborne transmission in order to stimulate revision of the science in the light of current evidence. Six 'myths' are presented, explained and ultimately refuted on the basis of recently published papers and expert opinion from previous work related to similar viruses. There is little doubt that SARS-CoV-2 is transmitted via a range of airborne particle sizes subject to all the usual ventilation parameters and human behaviour. Experts from specialties encompassing aerosol studies, ventilation, engineering, physics, virology and clinical medicine have joined together to produce this review to consolidate the evidence for airborne transmission mechanisms, and offer justification for modern strategies for prevention and control of COVID-19 in health care and the community.


Subject(s)
Aerosols , Air Microbiology , COVID-19/prevention & control , COVID-19/transmission , Infection Control/methods , Pandemics/prevention & control , Ventilation/methods , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , Female , Humans , Male , Middle Aged , SARS-CoV-2
2.
Environ Sci Process Impacts ; 21(8): 1280-1300, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31328749

ABSTRACT

The House Observations of Microbial and Environmental Chemistry (HOMEChem) study is a collaborative field investigation designed to probe how everyday activities influence the emissions, chemical transformations and removal of trace gases and particles in indoor air. Sequential and layered experiments in a research house included cooking, cleaning, variable occupancy, and window-opening. This paper describes the overall design of HOMEChem and presents preliminary case studies investigating the concentrations of reactive trace gases, aerosol particles, and surface films. Cooking was a large source of VOCs, CO2, NOx, and particles. By number, cooking particles were predominantly in the ultrafine mode. Organic aerosol dominated the submicron mass, and, while variable between meals and throughout the cooking process, was dominated by components of hydrocarbon character and low oxygen content, similar to cooking oil. Air exchange in the house ensured that cooking particles were present for only short periods. During unoccupied background intervals, particle concentrations were lower indoors than outdoors. The cooling coils of the house ventilation system induced cyclic changes in water soluble gases. Even during unoccupied periods, concentrations of many organic trace gases were higher indoors than outdoors, consistent with housing materials being potential sources of these compounds to the outdoor environment. Organic material accumulated on indoor surfaces, and exhibited chemical signatures similar to indoor organic aerosol.


Subject(s)
Air Microbiology/standards , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Environmental Monitoring/methods , Housing/standards , Particulate Matter/analysis , Aerosols , Air Conditioning , Air Filters , Cooking , Gases , Humans , Particle Size
3.
Indoor Air ; 28(4): 572-584, 2018 07.
Article in English | MEDLINE | ID: mdl-29665159

ABSTRACT

Building ventilation rates and indoor airflow conditions influence occupants' exposure to indoor air pollutants. By making time- and space-resolved measurement of 3 inert tracers steadily released in a single-family house in California for 8 weeks in summer and 5 weeks in winter, this study quantifies the air change rate of the living zone with 2-hour time resolution; estimates airflow rates between the living zone, attic, and crawlspace; and characterizes mixing of air in the split-level living space. Occupant behaviors altered the air change rates, primarily through opening windows and secondarily through operating the heating system. The air change rate correlated with the number of window openings, accounting for 57% of the variability measured across 2 seasons. There were substantial upward interzonal airflows between the crawlspace, living zone, and attic; downward airflows were negligible by comparison. More than 70% of the airflow entering the living zone in the winter and at night during summer came through the crawlspace, rather than directly from outdoors. The airflow from the living zone to the attic increased with the attic-outdoor temperature difference, indicating that buoyancy associated with solar heating of the attic induced airflow from the living zone, increasing the air change rate.


Subject(s)
Air Movements , Air Pollution, Indoor/analysis , Environmental Monitoring , Ventilation , California , Housing , Humans , Seasons
4.
Indoor Air ; 28(4): 559-571, 2018 07.
Article in English | MEDLINE | ID: mdl-29633369

ABSTRACT

Residences represent an important site for bioaerosol exposure. We studied bioaerosol concentrations, emissions, and exposures in a single-family residence in northern California with 2 occupants using real-time instrumentation during 2 monitoring campaigns (8 weeks during August-October 2016 and 5 weeks during January-March 2017). Time- and size-resolved fluorescent biological aerosol particles (FBAP) and total airborne particles were measured in real time in the kitchen using an ultraviolet aerodynamic particle sizer (UVAPS). Time-resolved occupancy status, household activity data, air-change rates, and spatial distribution of size-resolved particles were also determined throughout the house. Occupant activities strongly influenced indoor FBAP levels. Indoor FBAP concentrations were an order of magnitude higher when the house was occupied than when the house was vacant. Applying an integral material-balance approach, geometric mean of total FBAP emissions from human activities observed to perturb indoor levels were in the range of 10-50 million particles per event. During the summer and winter campaigns, occupants spent an average of 10 and 8.5 hours per day, respectively, awake and at home. During these hours, the geometric mean daily-averaged FBAP exposure concentration (1-10 µm diameter) was similar for each subject at 40 particles/L for summer and 29 particles/L for winter.


Subject(s)
Aerosols/analysis , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Environmental Exposure/analysis , Environmental Monitoring , California , Fluorescence , Housing , Humans , Particle Size , Particulate Matter
5.
Indoor Air ; 28(3): 404-414, 2018 05.
Article in English | MEDLINE | ID: mdl-29444354

ABSTRACT

Strong evidence suggests that clothing serves as a reservoir of chemical pollutants and particles, including bioaerosols, which may have health significance. However, little is known about the role that clothing may play as a transport vector for inhaled airborne particles. Here, we contribute toward bridging the knowledge gap by conducting experiments to investigate clothing release fraction (CRF), determined as the size-dependent ratio of released to deposited particulate matter in the diameter range 0.5-10 µm. In a fully controlled chamber with low background particle levels, we deployed a programmable robot to reproducibly quantify the size-dependent CRF as a function of motion type and intensity, dust loadings, and activity duration. On average, 0.3%-3% of deposited particles were subsequently released with fabric motion, confirming that clothing can act as a vehicle for transporting airborne particles. The CRF increased with the vigor of movement and with dust loading. Rubbing and shaking the fabric were more effective than fabric stretching in resuspending particles. We also found that most of the release happened quickly after the onset of the resuspension activity. Particle size substantially influenced the CRF, with larger particles exhibiting higher values.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Clothing , Particulate Matter/analysis , Textiles/analysis , Aerosols/analysis , Dust/analysis , Environmental Monitoring/methods , Humans , Inhalation Exposure/analysis , Particle Size
6.
Indoor Air ; 27(6): 1101-1112, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28556424

ABSTRACT

We present a model for the growth of organic films on impermeable indoor surfaces. The model couples transport through a gas-side boundary layer adjacent to the surface with equilibrium partitioning of semivolatile organic compounds (SVOCs) between the gas phase and the surface film. Model predictions indicate that film growth would primarily be influenced by the gas-phase concentration of SVOCs with octanol-air partitioning (Koa ) values in the approximate range 10≤log Koa ≤13. Within the relevant range, SVOCs with lower values will equilibrate with the surface film more rapidly. Over time, the film becomes relatively enriched in species with higher log Koa values, while the proportion of gas-phase SVOCs not in equilibrium with the film decreases. Given stable airborne SVOC concentrations, films grow at faster rates initially and then subsequently diminish to an almost steady growth rate. Once an SVOC is equilibrated with the film, its mass per unit film volume remains constant, while its mass per unit area increases in proportion to overall film thickness. The predictions of the conceptual model and its mathematical embodiment are generally consistent with results reported in the peer-reviewed literature.


Subject(s)
Air Pollution, Indoor , Models, Chemical , Volatile Organic Compounds/chemistry , Kinetics
7.
Indoor Air ; 27(2): 243-245, 2017 03.
Article in English | MEDLINE | ID: mdl-28229503
8.
Indoor Air ; 27(3): 587-598, 2017 05.
Article in English | MEDLINE | ID: mdl-27748976

ABSTRACT

Utilizing the ultraviolet light-induced fluorescence (UV-LIF) measurement technique as embodied in the Waveband Integrated Bioaerosol Sensor (WIBS-4A), we evaluated the fluorescent particle emissions associated with human shedding while walking in a chamber. The mean emission rates of supermicron (1-10 µm) fluorescent particles were in the range 6.8-7.5 million particles per person-h (~0.3 mg per person-h) across three participants, for conditions when the relative humidity was 60%-70% and no moisturizer was applied after showering. The fluorescent particles displayed a lognormal distribution with the geometric mean diameter in the range 2.5-4 µm and exhibited asymmetry factors that increased with particle size. Use of moisturizer was associated with changes in number and mass emission rates, size distribution, and particle shape. Emission rates were lower when the relative humidity was reduced, but these differences were not statistically significant.


Subject(s)
Aerosols/analysis , Air Pollution, Indoor/analysis , Waxes/metabolism , Adult , Asian People , Environmental Monitoring/methods , Female , Fluorescence , Humans , Humidity , Particle Size , Skin Cream , Universities
9.
Indoor Air ; 27(3): 690-702, 2017 05.
Article in English | MEDLINE | ID: mdl-27754563

ABSTRACT

In a warm and humid climate, increasing the temperature set point offers considerable energy benefits with low first costs. Elevated air movement generated by a personally controlled fan can compensate for the negative effects caused by an increased temperature set point. Fifty-six tropically acclimatized persons in common Singaporean office attire (0.7 clo) were exposed for 90 minutes to each of five conditions: 23, 26, and 29°C and in the latter two cases with and without occupant-controlled air movement. Relative humidity was maintained at 60%. We tested thermal comfort, perceived air quality, sick building syndrome symptoms, and cognitive performance. We found that thermal comfort, perceived air quality, and sick building syndrome symptoms are equal or better at 26°C and 29°C than at the common set point of 23°C if a personally controlled fan is available for use. The best cognitive performance (as indicated by task speed) was obtained at 26°C; at 29°C, the availability of an occupant-controlled fan partially mitigated the negative effect of the elevated temperature. The typical Singaporean indoor air temperature set point of 23°C yielded the lowest cognitive performance. An elevated set point in air-conditioned buildings augmented with personally controlled fans might yield benefits for reduced energy use and improved indoor environmental quality in tropical climates.


Subject(s)
Cognition/physiology , Temperature , Thermosensing/physiology , Acclimatization , Adult , Air Conditioning , Air Movements , Air Pollution, Indoor , Analysis of Variance , Female , Humans , Humidity , Male , Psychological Tests , Sick Building Syndrome , Singapore , Students , Surveys and Questionnaires , Task Performance and Analysis , Tropical Climate , Universities , Young Adult
10.
Indoor Air ; 27(4): 791-802, 2017 07.
Article in English | MEDLINE | ID: mdl-28009455

ABSTRACT

Inhalation exposure to elevated particulate matter levels is correlated with deleterious health and well-being outcomes. Despite growing evidence that identifies humans as sources of coarse airborne particles, the extent to which personal exposures are influenced by particle releases near occupants is unknown. In a controlled chamber, we monitored airborne total particle levels with high temporal and particle-size resolution for a range of simulated occupant activities. We also sampled directly from the subject's breathing zone to characterize exposures. A material-balance model showed that a sitting occupant released 8 million particles/h in the diameter range 1-10 µm. Elevated emissions were associated with increased intensity of upper body movements and with walking. Emissions were correlated with exposure, but not linearly. The personal PM10 exposure increment above the room-average levels was 1.6-13 µg/m3 during sitting, owing to spatial heterogeneity of particulate matter concentrations, a feature that was absent during walking. The personal cloud was more discernible among larger particles, as would be expected for shedding from skin and clothing. Manipulating papers and clothing fabric was a strong source of airborne particles. An increase in personal exposure was observed owing to particle mass exchange associated with a second room occupant.


Subject(s)
Aerosols/analysis , Environmental Exposure/analysis , Inhalation Exposure/analysis , Particulate Matter/analysis , Adult , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Clothing , Computer Simulation , Environmental Monitoring/methods , Female , Humans , Male , Particle Size , Respiration , Sedentary Behavior , Walking
11.
Indoor Air ; 27(4): 852-862, 2017 07.
Article in English | MEDLINE | ID: mdl-28005297

ABSTRACT

Draft is unwanted local convective cooling. The draft risk model of Fanger et al. (Energy and Buildings 12, 21-39, 1988) estimates the percentage of people dissatisfied with air movement due to overcooling at the neck. There is no model for predicting draft at ankles, which is more relevant to stratified air distribution systems such as underfloor air distribution (UFAD) and displacement ventilation (DV). We developed a model for predicted percentage dissatisfied with ankle draft (PPDAD ) based on laboratory experiments with 110 college students. We assessed the effect on ankle draft of various combinations of air speed (nominal range: 0.1-0.6 m/s), temperature (nominal range: 16.5-22.5°C), turbulence intensity (at ankles), sex, and clothing insulation (<0.7 clo; lower legs uncovered and covered). The results show that whole-body thermal sensation and air speed at ankles are the dominant parameters affecting draft. The seated subjects accepted a vertical temperature difference of up to 8°C between ankles (0.1 m) and head (1.1 m) at neutral whole-body thermal sensation, 5°C more than the maximum difference recommended in existing standards. The developed ankle draft model can be implemented in thermal comfort and air diffuser testing standards.


Subject(s)
Air Movements , Ankle/physiology , Personal Satisfaction , Temperature , Thermosensing/physiology , California , Clothing , Female , Humans , Male , Regression Analysis , Students , Universities , Ventilation
12.
Indoor Air ; 26(2): 193-206, 2016 Apr.
Article in English | MEDLINE | ID: mdl-25704637

ABSTRACT

Humans are a prominent source of airborne biological particles in occupied indoor spaces, but few studies have quantified human bioaerosol emissions. The chamber investigation reported here employs a fluorescence-based technique to evaluate bioaerosols with high temporal and particle size resolution. In a 75-m(3) chamber, occupant emission rates of coarse (2.5-10 µm) fluorescent biological aerosol particles (FBAPs) under seated, simulated office-work conditions averaged 0.9 ± 0.3 million particles per person-h. Walking was associated with a 5-6× increase in the emission rate. During both walking and sitting, 60-70% or more of emissions originated from the floor. The increase in emissions during walking (vs. while sitting) was mainly attributable to release of particles from the floor; the associated increased vigor of upper body movements also contributed. Clothing, or its frictional interaction with human skin, was demonstrated to be a source of coarse particles, and especially of the highly fluorescent fraction. Emission rates of FBAPs previously reported for lecture classes were well bounded by the experimental results obtained in this chamber study. In both settings, the size distribution of occupant FBAP emissions had a dominant mode in the 3-5 µm diameter range.


Subject(s)
Aerosols/analysis , Air Pollution, Indoor/analysis , Environmental Monitoring , Humans , Particle Size
13.
Indoor Air ; 25(4): 357-61, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26186267

ABSTRACT

In this editorial, we have highlighted key research opportunities and challenges in four topical themes for indoor chemistry: human occupants as agents influencing indoor chemistry; oxidative chemistry; surface phenomena; and semivolatile organic compounds. In each case, enough prior work has been done to demonstrate the importance of the theme and to create a foundation for future studies. Extensive achievements and ongoing progress in (outdoor) atmospheric chemistry­both in the analytical methods developed and in the scientific knowledge created­also contribute to a strong foundation from which to achieve rapid research progress in this exciting new domain.


Subject(s)
Air Pollution, Indoor , Environment, Controlled , Atmosphere/chemistry , Humans , Oxidation-Reduction , Surface Properties , Volatile Organic Compounds/chemistry
14.
Indoor Air ; 25(6): 641-52, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25403276

ABSTRACT

UNLABELLED: Baseline information on size-resolved bacterial, fungal, and particulate matter (PM) indoor air concentrations and emission rates is presented for six school classrooms sampled in four countries. Human occupancy resulted in significantly elevated airborne bacterial (81 times on average), fungal (15 times), and PM mass (nine times) concentrations as compared to vacant conditions. Occupied indoor/outdoor (I/O) ratios consistently exceeded vacant I/O ratios. Regarding size distributions, average room-occupied bacterial, fungal, and PM geometric mean particle sizes were similar to one another while geometric means estimated for bacteria, fungi, and PM mass during vacant sampling were consistently lower than when occupied. Occupancy also resulted in elevated indoor bacterial-to-PM mass-based and number-based ratios above corresponding outdoor levels. Mean emission rates due to human occupancy were 14 million cells/person/h for bacteria, 14 million spore equivalents/person/h for fungi, and 22 mg/person/h for PM mass. Across all locations, indoor emissions contributed 83 ± 27% (bacteria), 66 ± 19% (fungi), and 83 ± 24% (PM mass) of the average indoor air concentrations during occupied times. PRACTICAL IMPLICATIONS: An extensive data set of bacterial and fungal size-distributed indoor air concentrations and emission rates is presented. Analysis of these data contributes to an understanding of how indoor bacterial and fungal aerosols are influenced by human occupancy. This work extends beyond prior culture and DNA-based microbiome studies in buildings to include quantitative relationships between size-resolved bacterial and fungal concentrations in indoor air and building parameters such as occupancy, ventilation, and outdoor conditions. The work indicates that occupancy-associated emissions (e.g., via resuspension and shedding) contribute more to both bacterial and fungal indoor air concentrations than do outdoor sources for the occupied classrooms investigated in this study.


Subject(s)
Air Microbiology , Schools , Air Pollution, Indoor , Bacterial Load , Child , Colony Count, Microbial , Humans , Particulate Matter/analysis , Students
15.
Indoor Air ; 24(6): 604-17, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24654966

ABSTRACT

UNLABELLED: This study is among the first to apply laser-induced fluorescence to characterize bioaerosols at high time and size resolution in an occupied, common-use indoor environment. Using an ultraviolet aerodynamic particle sizer, we characterized total and fluorescent biological aerosol particle (FBAP) levels (1-15 µm diameter) in a classroom, sampling with 5-min resolution continuously during eighteen occupied and eight unoccupied days distributed throughout a one-year period. A material-balance model was applied to quantify per-person FBAP emission rates as a function of particle size. Day-to-day and seasonal changes in FBAP number concentration (NF ) values in the classroom were small compared to the variability within a day that was attributable to variable levels of occupancy, occupant activities, and the operational state of the ventilation system. Occupancy conditions characteristic of lecture classes were associated with mean NF source strengths of 2 × 10(6) particles/h/person, and 9 × 10(4) particles per metabolic g CO2 . During transitions between lectures, occupant activity was more vigorous, and estimated mean, per-person NF emissions were 0.8 × 10(6) particles per transition. The observed classroom peak in FBAP size at 3-4 µm is similar to the peak in fluorescent and biological aerosols reported from several studies outdoors. PRACTICAL IMPLICATIONS: Coarse particles that exhibit fluorescence at characteristic wavelengths are considered to be proxies for biological particles. Recently developed instruments permit their detection and sizing in real time. In a mechanically ventilated classroom, emissions from human occupants were a strong determinant of coarse-mode fluorescent biological aerosol particle (FBAP) levels. Human FBAP emission rates were significant under quiet occupancy conditions and increased with activity level. Fluorescent particle emissions peaked at a diameter of 3­4 µm, which is the expected modal size of airborne particles with associated microbes. Human activity patterns, and associated coarse FBAP and total particle levels varied strongly on short timescales. Thus, the dynamic temporal behavior of aerosol concentrations must be considered when determining collection protocols for samples meant to be representative of average concentrations using time-integrated or 'snapshot' bioaerosol measurement techniques.


Subject(s)
Air Pollution, Indoor/analysis , Aerosols/analysis , Environmental Monitoring , Fluorescence , Humans , Particle Size , Time Factors , Universities , Ventilation
16.
Indoor Air ; 22(5): 356-77, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22313149

ABSTRACT

UNLABELLED: This paper critically examines indoor exposure to semivolatile organic compounds (SVOCs) via dermal pathways. First, it demonstrates that--in central tendency--an SVOC's abundance on indoor surfaces and in handwipes can be predicted reasonably well from gas-phase concentrations, assuming that thermodynamic equilibrium prevails. Then, equations are developed, based upon idealized mass-transport considerations, to estimate transdermal penetration of an SVOC either from its concentration in skin-surface lipids or its concentration in air. Kinetic constraints limit air-to-skin transport in the case of SVOCs that strongly sorb to skin-surface lipids. Air-to-skin transdermal uptake is estimated to be comparable to or larger than inhalation intake for many SVOCs of current or potential interest indoors, including butylated hydroxytoluene, chlordane, chlorpyrifos, diethyl phthalate, Galaxolide, geranyl acetone, nicotine (in free-base form), PCB28, PCB52, Phantolide, Texanol and Tonalide. Although air-to-skin transdermal uptake is anticipated to be slow for bisphenol A, we find that transdermal permeation may nevertheless be substantial following its transfer to skin via contact with contaminated surfaces. The paper concludes with explorations of the influence of particles and dust on dermal exposure, the role of clothing and bedding as transport vectors, and the potential significance of hair follicles as transport shunts through the epidermis. PRACTICAL IMPLICATIONS: Human exposure to indoor pollutants can occur through dietary and nondietary ingestion, inhalation, and dermal absorption. Many factors influence the relative importance of these pathways, including physical and chemical properties of the pollutants. This paper argues that exposure to indoor semivolatile organic compounds (SVOCs) through the dermal pathway has often been underestimated. Transdermal permeation of SVOCs can be substantially greater than is commonly assumed. Transport of SVOCs from the air to and through the skin is typically not taken into account in exposure assessments. Yet, for certain SVOCs, intake through skin is estimated to be substantially larger than intake through inhalation. Exposure scientists, risk assessors, and public health officials should be mindful of the dermal pathway when estimating exposures to indoor SVOCs. Also, they should recognize that health consequences vary with exposure pathway. For example, an SVOC that enters the blood through the skin does not encounter the same detoxifying enzymes that an ingested SVOC would experience in the stomach, intestines, and liver before it enters the blood.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Organic Chemicals/analysis , Skin Absorption , Skin/drug effects , Skin/metabolism , Air Pollutants/pharmacokinetics , Humans , Organic Chemicals/pharmacokinetics
17.
Indoor Air ; 22(4): 339-51, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22257156

ABSTRACT

UNLABELLED: The role of human occupancy as a source of indoor biological aerosols is poorly understood. Size-resolved concentrations of total and biological particles in indoor air were quantified in a classroom under occupied and vacant conditions. Per-occupant emission rates were estimated through a mass-balance modeling approach, and the microbial diversity of indoor and outdoor air during occupancy was determined via rDNA gene sequence analysis. Significant increases of total particle mass and bacterial genome concentrations were observed during the occupied period compared to the vacant case. These increases varied in magnitude with the particle size and ranged from 3 to 68 times for total mass, 12-2700 times for bacterial genomes, and 1.5-5.2 times for fungal genomes. Emission rates per person-hour because of occupancy were 31 mg, 37 × 10(6) genome copies, and 7.3 × 10(6) genome copies for total particle mass, bacteria, and fungi, respectively. Of the bacterial emissions, ∼18% are from taxa that are closely associated with the human skin microbiome. This analysis provides size-resolved, per person-hour emission rates for these biological particles and illustrates the extent to which being in an occupied room results in exposure to bacteria that are associated with previous or current human occupants. PRACTICAL IMPLICATIONS: Presented here are the first size-resolved, per person emission rate estimates of bacterial and fungal genomes for a common occupied indoor space. The marked differences observed between total particle and bacterial size distributions suggest that size-dependent aerosol models that use total particles as a surrogate for microbial particles incorrectly assess the fate of and human exposure to airborne bacteria. The strong signal of human microbiota in airborne particulate matter in an occupied setting demonstrates that the aerosol route can be a source of exposure to microorganisms emitted from the skin, hair, nostrils, and mouths of other occupants.


Subject(s)
Air Microbiology , Air Pollution, Indoor/analysis , Bacteria/isolation & purification , DNA, Bacterial/analysis , DNA, Fungal/analysis , Fungi/isolation & purification , Bacteria/classification , Bacteria/genetics , DNA, Ribosomal/analysis , Environmental Exposure/adverse effects , Fungi/classification , Fungi/genetics , Genomics , Humans , Particle Size , Particulate Matter/analysis , Phylogeny , Population Density , Sick Building Syndrome/etiology , Sick Building Syndrome/microbiology , Students , Universities/statistics & numerical data
19.
Indoor Air ; 21(3): 191-204, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21204989

ABSTRACT

UNLABELLED: The scientific literature through 2005 on the effects of ventilation rates on health in indoor environments has been reviewed by a multidisciplinary group. The group judged 27 papers published in peer-reviewed scientific journals as providing sufficient information on both ventilation rates and health effects to inform the relationship. Consistency was found across multiple investigations and different epidemiologic designs for different populations. Multiple health endpoints show similar relationships with ventilation rate. There is biological plausibility for an association of health outcomes with ventilation rates, although the literature does not provide clear evidence on particular agent(s) for the effects. Higher ventilation rates in offices, up to about 25 l/s per person, are associated with reduced prevalence of sick building syndrome (SBS) symptoms. The limited available data suggest that inflammation, respiratory infections, asthma symptoms and short-term sick leave increase with lower ventilation rates. Home ventilation rates above 0.5 air changes per hour (h(-1)) have been associated with a reduced risk of allergic manifestations among children in a Nordic climate. The need remains for more studies of the relationship between ventilation rates and health, especially in diverse climates, in locations with polluted outdoor air and in buildings other than offices. PRACTICAL IMPLICATIONS: Ventilation with outdoor air plays an important role influencing human exposures to indoor pollutants. This review and assessment indicates that increasing ventilation rates above currently adopted standards and guidelines should result in reduced prevalence of negative health outcomes. Building operators and designers should avoid low ventilation rates unless alternative effective measures, such as source control or air cleaning, are employed to limit indoor pollutant levels.


Subject(s)
Air Pollution, Indoor/adverse effects , Sick Building Syndrome/epidemiology , Ventilation/statistics & numerical data , Air Pollution, Indoor/prevention & control , Asthma/epidemiology , Communicable Diseases/epidemiology , Housing , Humans , Interdisciplinary Communication , Respiratory Tract Infections/epidemiology , Schools , Sick Leave/statistics & numerical data , Workplace
20.
Indoor Air ; 21(3): 219-30, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21204991

ABSTRACT

UNLABELLED: More than 30 years after the First International Indoor Climate Symposium, ten researchers from the USA, Slovakia, Sweden, and Denmark gathered to review the current status of indoor environmental research. We initiated our review with discussions during the 1-day meeting and followed that with parallel research and writing efforts culminating with internal review and revision cycles. In this paper, we present our choices for the most important research findings on indoor environmental quality from the past three decades followed by a discussion of the most important research questions in our field today. We then continue with a discussion on whether there are research areas for which we can 'close the book' and say that we already know what is needed. Finally, we discuss whether we can maintain our identity in the future or it is time to team up with new partners. PRACTICAL IMPLICATIONS: In the early years of this field, the accumulated knowledge was small and it was possible for any researcher to acquire a complete understanding. To do so has become impossible today as what we know has grown to exceed the learning capacity of any person. These circumstances challenge us to work collectively to synthesize what we do know and to define clearly what remains to be learned. If we fail to do these things well, we risk repeating research without memory, an inefficiency that we cannot afford.


Subject(s)
Air Pollutants/history , Air Pollution, Indoor/history , Environmental Health/history , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/prevention & control , History, 20th Century , History, 21st Century , Humans , Research/history , Research/trends
SELECTION OF CITATIONS
SEARCH DETAIL
...