Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 92(5): 053101, 2021 May 01.
Article in English | MEDLINE | ID: mdl-34243278

ABSTRACT

We developed a hybrid optical pump-x-ray probe facility based on the "Kurchatov's synchrotron radiation source" and terawatt (TW) femtosecond laser. The bright x-ray photon source is based on either synchrotron radiation [up to 6 × 1014 photons/(s mm2 mrad2 0.1% bandwidth)] or laser-plasma generators (up to 108 photons/sr/pulse). The terawatt (TW) femtosecond laser pulse initiated phase transitions and a non-stationary "extreme" state of matter, while the delayed x-ray pulse acts as a probe. The synchronization between synchrotron radiation and laser pulses is achieved at 60.3 MHz using an intelligent field-programmable gate array-based phased locked loop. The timing jitter of the system is less than 30 ps. In laser-plasma sources, the x-ray and laser pulses are automatically synchronized because they are produced by using the same laser source (TW laser system). We have reached an x-ray yield of about 106 photons/sr/pulse with 6-mJ sub-ps laser pulses and using helium as a local gas medium. Under vacuum conditions, the laser energy increase up to 40 mJ leads to the enhancement of the x-ray yield of up to 108 photons/sr/pulse. The developed hybrid facility paves the way for a new class of time-resolved x-ray optical pump-probe experiments in the time interval from femtoseconds to microseconds and the energy spectrum from 3 to 30 keV.

2.
Biomed Opt Express ; 12(2): 1020-1035, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33680557

ABSTRACT

The liquid and lyophilized blood plasma of patients with benign or malignant thyroid nodules and healthy individuals were studied by terahertz (THz) time-domain spectroscopy and machine learning. The blood plasma samples from malignant nodule patients were shown to have higher absorption. The glucose concentration and miRNA-146b level were correlated with the sample's absorption at 1 THz. A two-stage ensemble algorithm was proposed for the THz spectra analysis. The first stage was based on the Support Vector Machine with a linear kernel to separate healthy and thyroid nodule participants. The second stage included additional data preprocessing by Ornstein-Uhlenbeck kernel Principal Component Analysis to separate benign and malignant thyroid nodule participants. Thus, the distinction of malignant and benign thyroid nodule patients through their lyophilized blood plasma analysis by terahertz time-domain spectroscopy and machine learning was demonstrated.

3.
Opt Lett ; 43(22): 5693-5696, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30439930

ABSTRACT

We demonstrate free-beam spectral self-compression of ~100-GW femtosecond laser pulses due to self-phase modulation (SPM) in a transparent dielectric. While all the earlier studies of SPM-induced spectral narrowing have been performed using optical fibers, experiments and simulations presented in this Letter show that this type of spectral transformation can be implemented as a part of a full three-dimensional field-waveform dynamics and can be extended to peak powers ∼105 times higher than the critical power of self-focusing. With a properly chosen initial chirp, spectral self-compression is accompanied by pulse compression, providing spectral-temporal mode self-compression as a whole.

SELECTION OF CITATIONS
SEARCH DETAIL
...