Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurol ; 12: 603767, 2021.
Article in English | MEDLINE | ID: mdl-33603709

ABSTRACT

Objective: Telerehabilitation (TR) is now, in the context of COVID-19, more clinically relevant than ever as a major source of outpatient care. The social network of a patient is a critical yet understudied factor in the success of TR that may influence both engagement in therapy programs and post-stroke outcomes. We designed a 12-week home-based TR program for stroke patients and evaluated which social factors might be related to motor gains and reduced depressive symptoms. Methods: Stroke patients (n = 13) with arm motor deficits underwent supervised home-based TR for 12 weeks with routine assessments of motor function and mood. At the 6-week midpoint, we mapped each patient's personal social network and evaluated relationships between social network metrics and functional improvements from TR. Finally, we compared social networks of TR patients with a historical cohort of 176 stroke patients who did not receive any TR to identify social network differences. Results: Both network size and network density were related to walk time improvement (p = 0.025; p = 0.003). Social network density was related to arm motor gains (p = 0.003). Social network size was related to reduced depressive symptoms (p = 0.015). TR patient networks were larger (p = 0.012) and less dense (p = 0.046) than historical stroke control networks. Conclusions: Social network structure is positively related to improvement in motor status and mood from TR. TR patients had larger and more open social networks than stroke patients who did not receive TR. Understanding how social networks intersect with TR outcomes is crucial to maximize effects of virtual rehabilitation.

2.
Stroke ; 51(11): 3361-3365, 2020 11.
Article in English | MEDLINE | ID: mdl-32942967

ABSTRACT

BACKGROUND AND PURPOSE: Clinical methods have incomplete diagnostic value for early diagnosis of acute stroke and large vessel occlusion (LVO). Electroencephalography is rapidly sensitive to brain ischemia. This study examined the diagnostic utility of electroencephalography for acute stroke/transient ischemic attack (TIA) and for LVO. METHODS: Patients (n=100) with suspected acute stroke in an emergency department underwent clinical exam then electroencephalography using a dry-electrode system. Four models classified patients, first as acute stroke/TIA or not, then as acute stroke with LVO or not: (1) clinical data, (2) electroencephalography data, (3) clinical+electroencephalography data using logistic regression, and (4) clinical+electroencephalography data using a deep learning neural network. Each model used a training set of 60 randomly selected patients, then was validated in an independent cohort of 40 new patients. RESULTS: Of 100 patients, 63 had a stroke (43 ischemic/7 hemorrhagic) or TIA (13). For classifying patients as stroke/TIA or not, the clinical data model had area under the curve=62.3, whereas clinical+electroencephalography using deep learning neural network model had area under the curve=87.8. Results were comparable for classifying patients as stroke with LVO or not. CONCLUSIONS: Adding electroencephalography data to clinical measures improves diagnosis of acute stroke/TIA and of acute stroke with LVO. Rapid acquisition of dry-lead electroencephalography is feasible in the emergency department and merits prehospital evaluation.


Subject(s)
Deep Learning , Electroencephalography/methods , Ischemic Stroke/diagnosis , Aged , Aged, 80 and over , Female , Hemorrhagic Stroke/diagnosis , Hemorrhagic Stroke/physiopathology , Humans , Ischemic Attack, Transient/diagnosis , Ischemic Attack, Transient/physiopathology , Ischemic Stroke/physiopathology , Logistic Models , Male , Middle Aged , Neural Networks, Computer , Sensitivity and Specificity , Stroke/diagnosis , Stroke/physiopathology
3.
Front Neurol ; 11: 611453, 2020.
Article in English | MEDLINE | ID: mdl-33613417

ABSTRACT

Introduction: High doses of activity-based rehabilitation therapy improve outcomes after stroke, but many patients do not receive this for various reasons such as poor access, transportation difficulties, and low compliance. Home-based telerehabilitation (TR) can address these issues. The current study evaluated the feasibility of an expanded TR program. Methods: Under the supervision of a licensed therapist, adults with stroke and limb weakness received home-based TR (1 h/day, 6 days/week) delivered using games and exercises. New features examined include extending therapy to 12 weeks duration, treating both arm and leg motor deficits, patient assessments performed with no therapist supervision, adding sensors to real objects, ingesting a daily experimental (placebo) pill, and generating automated actionable reports. Results: Enrollees (n = 13) were median age 61 (IQR 52-65.5), and 129 (52-486) days post-stroke. Patients initiated therapy on 79.9% of assigned days and completed therapy on 65.7% of days; median therapy dose was 50.4 (33.3-56.7) h. Non-compliance doubled during weeks 7-12. Modified Rankin scores improved in 6/13 patients, 3 of whom were >3 months post-stroke. Fugl-Meyer motor scores increased by 6 (2.5-12.5) points in the arm and 1 (-0.5 to 5) point in the leg. Assessments spanning numerous dimensions of stroke outcomes were successfully implemented; some, including a weekly measure that documented a decline in fatigue (p = 0.004), were successfully scored without therapist supervision. Using data from an attached sensor, real objects could be used to drive game play. The experimental pill was taken on 90.9% of therapy days. Automatic actionable reports reliably notified study personnel when critical values were reached. Conclusions: Several new features performed well, and useful insights were obtained for those that did not. A home-based telehealth system supports a holistic approach to rehabilitation care, including intensive rehabilitation therapy, secondary stroke prevention, screening for complications of stroke, and daily ingestion of a pill. This feasibility study informs future efforts to expand stroke TR. Clinical Trial Registration: Clinicaltrials.gov, # NCT03460587.

SELECTION OF CITATIONS
SEARCH DETAIL
...