Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Plant Biochem Biotechnol ; : 1-16, 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36685987

ABSTRACT

Ginger is an important spice crop with medicinal values and gingerols are the most abundant pungent polyphenols present in ginger, responsible for most of its pharmacological properties. The present study focuses on the molecular mechanism of gingerol biosynthesis in ginger using transcriptome analysis. Suppression Subtractive Hybridization (SSH) was done in leaf and rhizome tissues using high gingerol-producing ginger somaclone B3 as the tester and parent cultivar Maran as the driver and generated high-quality leaf and rhizome Expressed Sequence Tags (ESTs). The Blast2GO annotations of the ESTs revealed the involvement of leaf ESTs in secondary metabolite production, identifying the peroxisomal KAT2 gene (Leaf EST 9) for the high gingerol production in ginger. Rhizome ESTs mostly coded for DNA metabolic processes and differential genes for high gingerol production were not observed in rhizomes. In the qRT-PCR analysis, somaclone B3 had shown high chalcone synthase (CHS: rate-limiting gene in gingerol biosynthetic pathway) activity (0.54 fold) in the leaves of rhizome sprouts. The presence of a high gingerol gene in leaf ESTs and high expression of CHS in leaves presumed that the site of synthesis of gingerols in ginger is the leaves. A modified pathway for gingerol/polyketide backbone formation has been constructed explaining the involvement of KAT gene isoforms KAT2 and KAT5 in gingerol/flavonoid biosynthesis, specifically the KAT2 gene which is otherwise thought to be involved mainly in ß-oxidation. The results of the present investigations have the potential of utilizing KAT/thiolase superfamily enzymes for protein/metabolic pathway engineering in ginger for large-scale production of gingerols. Supplementary Information: The online version contains supplementary material available at 10.1007/s13562-022-00825-x.

2.
Hum Exp Toxicol ; 38(7): 753-761, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30942101

ABSTRACT

Coconut oil (CO) is enriched with medium chain saturated fatty acids like lauric acid (LA), capric acid and caprylic acid, which are known to have several health benefits. LA, the predominant fatty acid in CO, is reported to possess anticancer activity mediated through oxidative stress-induced apoptosis; however, there is no clear information on its cellular signalling mechanism. The present study screened the anticancer potential of various fatty acids present in CO (capric acid, caprylic acid and LA) using in silico tools such as CDOCKER in Accelrys Discovery Studio by targeting proteins like epidermal growth factor receptor (EGFR), cyclin-dependent kinase and thymidine synthase (TS). The results were further confirmed using cell culture-based studies and quantitative PCR. Among the tested compounds, LA was found to be the most active and showed a higher affinity towards EGFR and TS. Corroborating with these results, LA-induced dose-dependent cytotoxicity towards HCT-15 (human colon cancer), HepG2 (human hepatocellular carcinoma) and Raw 264.7 (murine macrophages) cells exhibiting morphological characteristics of apoptosis. Further, in HCT-15 cells exposed to LA (30 and 50 µg/mL), the expression of EGFR was found to be downregulated by 1.33- and 1.58-fold. The study thus concludes that the anticancer activity of LA may be partially mediated by the downregulation of EGFR signalling and consequent reduction in cell viability through apoptosis. Since EGFR signalling is crucial in cancer cell survival and is a prime target in drug development, the present study has pharmacological significance.


Subject(s)
Coconut Oil/pharmacology , Colonic Neoplasms/metabolism , ErbB Receptors/metabolism , Fatty Acids/pharmacology , Animals , Cell Line , Cell Survival/drug effects , Down-Regulation/drug effects , Humans , Mice , Molecular Docking Simulation
3.
Plant Physiol Biochem ; 127: 414-424, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29680705

ABSTRACT

Natural rubber (cis-1, 4-polyisoprene) is being produced from bark laticifer cells of Hevea brasiliensis and the popular high latex yielding Indian rubber clones are easily prone to onset of tapping panel dryness syndrome (TPD) which is considered as a physiological syndrome affecting latex production either partially or completely. This report describes an efficient protocol for development of transgenic rubber plants by over-expression of 3-hydroxy 3-methylglutaryl Co-enzyme A reductase 1 (hmgr1) gene which is considered as rate limiting factor for latex biosynthesis via Agrobacterium-mediated transformation. The pBIB plasmid vector containing hmgr1 gene cloned under the control of a super-promoter was used for genetic transformation using embryogenic callus. Putatively transgenic cell lines were obtained on selection medium and produced plantlets with 44% regeneration efficiency. Transgene integration was confirmed by PCR amplification of 1.8 kb hmgr1 and 0.6 kb hpt genes from all putatively transformed callus lines as well as transgenic plants. Southern blot analysis showed the stable integration and presence of transgene in the transgenic plants. Over expression of hmgr1 transgene was determined by Northern blot hybridization, semi-quantitative PCR and real-time PCR (qRT-PCR) analysis. Accumulation of hmgr1 mRNA transcripts was more abundant in transgenic plants than control. Increased level of photosynthetic pigments, protein contents and HMGR enzyme activity was also noticed in transgenic plants over control. Interestingly, the latex yield was significantly enhanced in all transgenic plants compared to the control. The qRT-PCR results exhibit that the hmgr1 mRNA transcript levels was 160-fold more abundance in transgenic plants over untransformed control. These results altogether suggest that there is a positive correlation between latex yield and accumulation of mRNA transcripts level as well as HMGR enzyme activity in transgenic rubber plants. It is presumed that there is a possibility for enhanced level of latex biosynthesis in transgenic plants as the level of mRNA transcripts and HMGR enzyme activity is directly correlated with latex yield in rubber tree. Further, the present results clearly suggest that the quantification of HMGR enzyme activity in young seedlings will be highly beneficial for early selection of high latex yielding plants in rubber breeding programs.


Subject(s)
Hevea , Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent , Latex/biosynthesis , Plant Proteins , Plants, Genetically Modified , Hevea/genetics , Hevea/metabolism , Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent/biosynthesis , Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent/genetics , Plant Proteins/biosynthesis , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
4.
Interdiscip Sci ; 10(4): 686-693, 2018 Dec.
Article in English | MEDLINE | ID: mdl-28349439

ABSTRACT

Colorectal cancer is one among the most common cancers in the world and a major cause of cancer related deaths. Similar to other cancers, colorectal carcinogenesis is often associated with over expression of genes related to cell growth and proliferation, especially Epidermal Growth Factor Receptor (EGFR). There is an increasing attention towards the plant derived compounds in prevention of colorectal carcinogenesis by downregulating EGFR. Among plants, garlic (Allium sativum L.) is emerging with anticancer properties by virtue of its organosulfur compounds. The present study was aimed to analyze the interaction ability of garlic compounds in the active region of EGFR gene by in silico molecular docking studies and in vitro validation. This was conducted using the Discovery studio software version 4.0. Among the tested compounds, s-allyl-l-cysteine-sulfoxide (SACS)/alliin showed higher affinity towards EGFR. Furthermore, wet lab analysis using cell viability test and EGFR expression analysis in colorectal cancer cells confirmed its efficacy as a potent anticancer agent.


Subject(s)
Colorectal Neoplasms/genetics , Cysteine/analogs & derivatives , Garlic/chemistry , Gene Expression Regulation, Neoplastic/drug effects , Phytochemicals/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Colorectal Neoplasms/pathology , Cysteine/chemistry , Cysteine/pharmacology , ErbB Receptors/chemistry , ErbB Receptors/genetics , ErbB Receptors/metabolism , Humans , Hydrogen Bonding , Ligands , Phytochemicals/chemistry
5.
Asian Pac J Cancer Prev ; 17(8): 4019-23, 2016.
Article in English | MEDLINE | ID: mdl-27644655

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) or bowel cancer is one of the most important cancer diseases, needing serious attention. The cell surface receptor gene human epidermal growth factor receptor (EGFR) may have an important role in provoking CRC. In this pharmaceutical era, it is always attempted to identify plant-based drugs for cancer, which will have less side effects for human body, unlike the chemically synthesized marketed drugs having serious side effects. So, in this study the authors tried to assess the activity of two important plant compounds, ferulic acid (FA) and p-coumaric acid (pCA), on CRC. MATERIALS AND METHODS: FA and pCA were tested for their cytotoxic effects on the human CRC cell line HCT 15 and also checked for the level of gene expression of EGFR by real time PCR analysis. Positive results were confirmed by in silico molecular docking studies using Discovery Studio (DS) 4.0. The drug parallel features of the same compounds were also assessed in silico. RESULTS: Cytotoxicity experiments revealed that both the compounds were efficient in killing CRC cells on a controlled concentration basis. In addition, EGFR expression was down-regulated in the presence of the compounds. Docking studies unveiled that both the compounds were able to inhibit EGFR at its active site. Pharmacokinetic analysis of these compounds opened up their drug like behaviour. CONCLUSIONS: The findings of this study emphasize the importance of plant compounds for targeting diseases like CRC.


Subject(s)
Cell Proliferation/drug effects , Colorectal Neoplasms/drug therapy , Coumaric Acids/pharmacology , Down-Regulation/drug effects , ErbB Receptors/genetics , Phenol/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Catalytic Domain/drug effects , Cell Line, Tumor , Colorectal Neoplasms/genetics , Gene Expression/drug effects , Humans , Molecular Docking Simulation/methods , Plants/chemistry , Propionates
6.
Anc Sci Life ; 11(1-2): 43-5, 1991 Jul.
Article in English | MEDLINE | ID: mdl-22556559

ABSTRACT

Successful callusing was obtained from leaf segments of Gymnema sylvestre R. Br. Cultures aseptically on MS medium with various concentrations of growth regulators.

SELECTION OF CITATIONS
SEARCH DETAIL
...