Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3990, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734685

ABSTRACT

The path of tokamak fusion and International thermonuclear experimental reactor (ITER) is maintaining high-performance plasma to produce sufficient fusion power. This effort is hindered by the transient energy burst arising from the instabilities at the boundary of plasmas. Conventional 3D magnetic perturbations used to suppress these instabilities often degrade fusion performance and increase the risk of other instabilities. This study presents an innovative 3D field optimization approach that leverages machine learning and real-time adaptability to overcome these challenges. Implemented in the DIII-D and KSTAR tokamaks, this method has consistently achieved reactor-relevant core confinement and the highest fusion performance without triggering damaging bursts. This is enabled by advances in the physics understanding of self-organized transport in the plasma edge and machine learning techniques to optimize the 3D field spectrum. The success of automated, real-time adaptive control of such complex systems paves the way for maximizing fusion efficiency in ITER and beyond while minimizing damage to device components.

2.
Phys Rev Lett ; 129(20): 205001, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36461991

ABSTRACT

Experiments on the DIII-D tokamak have identified a novel regime in which applied resonant magnetic perturbations (RMPs) increase the particle confinement and overall performance. This Letter details a robust range of counter-current rotation over which RMPs cause this density pump-in effect for high confinement (H mode) plasmas. The pump in is shown to be caused by a reduction of the turbulent transport and to be correlated with a change in the sign of the induced neoclassical transport. This novel reversal of the RMP induced transport has the potential to significantly improve reactor relevant, three-dimensional magnetic confinement scenarios.

3.
Rev Sci Instrum ; 93(10): 103528, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36319341

ABSTRACT

Forward modeling is used to interpret inversion patterns of the pedestal-Scrape of Layer (SOL) Electron Cyclotron Emission (ECE) in DIII-D H-mode experiments. The modeling not only significantly improves the ECE data interpretation quality but also leads to the potential measurements of (1) the magnetic field strength |B| at the separatrix, (2) the pedestal |B| evolution during an inter-Edge Localized Mode (ELM) period, and (3) the pedestal Magnetohydrodynamics (MHD) radial structure. The ECE shine-through effect leads to three types of pedestal-SOL radiation inversions that are discussed in this paper. The first type of inversion is the non-monotonic Te,rad profile with respect to the major radius. Using the ECE frequency at the minimum Te,rad, the inversion can be applied to measure the magnetic field |B| at the separatrix and calibrate the mapping of the ECE channels with respect to the separatrix. The second type of inversion refers to the opposite phase between the radiation fluctuations δTe,rad at the pedestal and SOL. This δTe,rad phase inversion is sensitive to density and temperature fluctuations at the pedestal foot and, thus, can be used to qualitatively measure the MHD radial structure. The third type of inversion appears when the pedestal and SOL Te,rad evolve in an opposite trend, which can be used to infer the pedestal |B| field change during an inter-ELM period. The bandwidth effect on measuring δTe,rad due to pedestal MHD is also investigated in the radiation modeling.

4.
Phys Rev Lett ; 126(12): 125001, 2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33834790

ABSTRACT

Predictive 3D optimization reveals a novel approach to modify a nonaxisymmetric magnetic perturbation to be entirely harmless for tokamaks, by essentially restoring quasisymmetry in perturbed particle orbits as much as possible. Such a quasisymmetric magnetic perturbation (QSMP) has been designed and successfully tested in the KSTAR and DIII-D tokamaks, demonstrating no performance degradation despite the large overall amplitudes of nonaxisymmetric fields and strong response otherwise expected in the tested plasmas. The results indicate that a quasisymmetric optimization is a robust path of error field correction across the resonant and nonresonant field spectrum in a tokamak, leveraging the prevailing concept of quasisymmetry for general 3D plasma confinement systems such as stellarators. The optimization becomes, in fact, a simple eigenvalue problem to the so-called torque response matrices if a perturbed equilibrium is calculated consistent with nonaxisymmetric neoclassical transport.

5.
Phys Rev Lett ; 125(4): 045001, 2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32794790

ABSTRACT

Edge-localized mode (ELM) suppression by resonant magnetic perturbations (RMPs) generally occurs over very narrow ranges of the plasma current (or magnetic safety factor q_{95}) in the DIII-D tokamak. However, wide q_{95} ranges of ELM suppression are needed for the safety and operational flexibility of ITER and future reactors. In DIII-D ITER similar shape plasmas with n=3 RMPs, the range of q_{95} for ELM suppression is found to increase with decreasing electron density. Nonlinear two-fluid MHD simulations reproduce the observed q_{95} windows of ELM suppression and the dependence on plasma density, based on the conditions for resonant field penetration at the top of the pedestal. When the RMP amplitude is close to the threshold for resonant field penetration, only narrow isolated magnetic islands form near the top of the pedestal, leading to narrow q_{95} windows of ELM suppression. However, as the threshold for field penetration decreases with decreasing density, resonant field penetration can take place over a wider range of q_{95}. For sufficiently low density (penetration threshold) multiple magnetic islands form near the top of the pedestal giving rise to continuous q_{95} windows of ELM suppression. The model predicts that wide q_{95} windows of ELM suppression can be achieved at substantially higher pedestal pressure in DIII-D by shifting to higher toroidal mode number (n=4) RMPs.

6.
Phys Rev Lett ; 123(11): 115001, 2019 Sep 13.
Article in English | MEDLINE | ID: mdl-31573275

ABSTRACT

We observe the formation of a high-pressure staircase pedestal (≈16-20 kPa) in the DIII-D tokamak when large amplitude edge localized modes are suppressed using resonant magnetic perturbations. The staircase pedestal is characterized by a flattening of the density and temperature profiles in midpedestal creating a two-step staircase pedestal structure correlated with the appearance of midpedestal broadband fluctuations. The pedestal oscillates between the staircase and single-step structure every 40-60 ms, correlated with oscillations in the heat and particle flux to the divertor. Gyrokinetic analysis using the cgyro code shows that when the heat and particle flux to the divertor decreases, the pedestal broadens and the E×B shear at the midpedestal decreases, triggering a transport bifurcation from the kinetic ballooning mode (KBM) to trapped electron mode (TEM) limited transport that flattens the density and temperature profiles at midpedestal and results in the formation of the staircase pedestal. As the heat flux to the divertor increases, the pedestal narrows and the E×B shear at the midpedestal increases, triggering a back transition from TEM to KBM limited transport. The pedestal pressure increases during the staircase phase, indicating that enhanced midpedestal turbulence can be beneficial for confinement.

7.
Rev Sci Instrum ; 89(10): 10K121, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30399718

ABSTRACT

We present a device for controlled injection of a variety of materials in powder form. The system implements four independent feeder units, arranged to share a single vertical drop tube. Each unit consists of a 80 ml reservoir, coupled to a horizontal linear trough, where a layer of powder is advanced by piezo-electric agitation at a speed proportional to the applied voltage, until it falls into a drop tube. The dropper has been tested with a number of impurities of low (B, BN, C), intermediate (Si, SiC), and high Z (Sn) and a variety of microscopic structures (flakes, spheres, rocks) and sizes (5-200 µm). For low Z materials, drop rates ∼2-200 mg/s have been obtained showing good repeatability and uniformity. A calibrated light-emitting diode (LED)-based flowmeter allows measuring and monitoring the drop rate during operation. The fast time-response of the four feeders allows combination of steady and pulsed injections, providing a flexible tool for controlled-dose, real-time impurity injection in fusion plasmas.

8.
Rev Sci Instrum ; 89(10): 10H120, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30399858

ABSTRACT

A new generation of millimeter-wave heterodyne imaging receiver arrays has been developed and demonstrated on the DIII-D electron cyclotron emission imaging (ECEI) system. Improved circuit integration, improved noise performance, and enhanced shielding from out-of-band emission are made possible by using advanced liquid crystal polymer (LCP) substrates and monolithic microwave integrated circuit (MMIC) receiver chips. This array exhibits ∼15 dB additional gain and >30× reduction in noise temperature compared to previous generation ECEI arrays. Each LCP horn-waveguide module houses a 3 × 3 mm GaAs MMIC receiver chip, which consists of a low noise millimeter-wave preamplifier, balanced mixer, and IF amplifier together with a local oscillator multiplier chain driven at ∼12 GHz. A proof-of-principle partial LCP instrument with 5 poloidal channels was installed on DIII-D in 2017, with a full proof-of-principle system (20 poloidal × 8 radial channels) installed and commissioned in early 2018. The enhanced shielding of the LCP modules is seen to greatly reduce the sensitivity of ECEI signals to out-of-band microwave noise which has plagued previous ECEI studies on DIII-D. The LCP ECEI system is expected to be a valuable diagnostic tool for pedestal region measurements, focusing particularly on electron temperature evolution during edge localized mode bursting.

9.
Phys Rev Lett ; 117(13): 135001, 2016 Sep 23.
Article in English | MEDLINE | ID: mdl-27715095

ABSTRACT

New evidence indicates that there is significant 3D variation in density fluctuations near the boundary of weakly 3D tokamak plasmas when resonant magnetic perturbations are applied to suppress transient edge instabilities. The increase in fluctuations is concomitant with an increase in the measured density gradient, suggesting that this toroidally localized gradient increase could be a mechanism for turbulence destabilization in localized flux tubes. Two-fluid magnetohydrodynamic simulations find that, although changes to the magnetic field topology are small, there is a significant 3D variation of the density gradient within the flux surfaces that is extended along field lines. This modeling agrees qualitatively with the measurements. The observed gradient and fluctuation asymmetries are proposed as a mechanism by which global profile gradients in the pedestal could be relaxed due to a local change in the 3D equilibrium. These processes may play an important role in pedestal and scrape-off layer transport in ITER and other future tokamak devices with small applied 3D fields.

10.
Phys Rev Lett ; 114(10): 105001, 2015 Mar 13.
Article in English | MEDLINE | ID: mdl-25815937

ABSTRACT

Density pumpout and edge-localized mode (ELM) suppression by applied n=2 magnetic fields in low-collisionality DIII-D plasmas are shown to be correlated with the magnitude of the plasma response driven on the high-field side (HFS) of the magnetic axis but not the low-field side (LFS) midplane. These distinct responses are a direct measurement of a multimodal magnetic plasma response, with each structure preferentially excited by a different n=2 applied spectrum and preferentially detected on the LFS or HFS. Ideal and resistive magneto-hydrodynamic (MHD) calculations find that the LFS measurement is primarily sensitive to the excitation of stable kink modes, while the HFS measurement is primarily sensitive to resonant currents (whether fully shielding or partially penetrated). The resonant currents are themselves strongly modified by kink excitation, with the optimal applied field pitch for pumpout and ELM suppression significantly differing from equilibrium field alignment.

11.
Phys Rev Lett ; 114(10): 105002, 2015 Mar 13.
Article in English | MEDLINE | ID: mdl-25815938

ABSTRACT

Rapid bifurcations in the plasma response to slowly varying n=2 magnetic fields are observed as the plasma transitions into and out of edge-localized mode (ELM) suppression. The rapid transition to ELM suppression is characterized by an increase in the toroidal rotation and a reduction in the electron pressure gradient at the top of the pedestal that reduces the perpendicular electron flow there to near zero. These events occur simultaneously with an increase in the inner-wall magnetic response. These observations are consistent with strong resonant field penetration of n=2 fields at the onset of ELM suppression, based on extended MHD simulations using measured plasma profiles. Spontaneous transitions into (and out of) ELM suppression with a static applied n=2 field indicate competing mechanisms of screening and penetration of resonant fields near threshold conditions. Magnetic measurements reveal evidence for the unlocking and rotation of tearinglike structures as the plasma transitions out of ELM suppression.

12.
Rev Sci Instrum ; 85(11): 11E701, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25430364

ABSTRACT

By arranging the particle first banana orbits to pass near a distant detector, the light ion beam probe (LIBP) utilizes orbital deflection to probe internal fields and field fluctuations. The LIBP technique takes advantage of (1) the in situ, known source of fast ions created by beam-injected neutral particles that naturally ionize near the plasma edge and (2) various commonly available diagnostics as its detector. These born trapped particles can traverse the plasma core on their inner banana leg before returning to the plasma edge. Orbital displacements (the forces on fast ions) caused by internal instabilities or edge perturbing fields appear as modulated signal at an edge detector. Adjustments in the q-profile and plasma shape that determine the first orbit, as well as the relative position of the source and detector, enable studies under a wide variety of plasma conditions. This diagnostic technique can be used to probe the impact on fast ions of various instabilities, e.g., Alfvén eigenmodes (AEs) and neoclassical tearing modes, and of externally imposed 3D fields, e.g., magnetic perturbations. To date, displacements by AEs and by externally applied resonant magnetic perturbation fields have been measured using a fast ion loss detector. Comparisons with simulations are shown. In addition, nonlinear interactions between fast ions and independent AE waves are revealed by this technique.

13.
Phys Rev Lett ; 113(13): 135001, 2014 Sep 26.
Article in English | MEDLINE | ID: mdl-25302895

ABSTRACT

A path to a new high performance regime has been discovered in tokamaks that could improve the attractiveness of a fusion reactor. Experiments on DIII-D using a quiescent H-mode edge have navigated a valley of improved edge peeling-ballooning stability that opens up with strong plasma shaping at high density, leading to a doubling of the edge pressure over the standard H mode with edge localized modes at these parameters. The thermal energy confinement time increases as a result of both the increased pedestal height and improvements in the core transport and reduced low-k turbulence. Calculations of the pedestal height and width as a function of density using constraints imposed by peeling-ballooning and kinetic-ballooning theory are in quantitative agreement with the measurements.

14.
Phys Rev Lett ; 110(6): 065004, 2013 Feb 08.
Article in English | MEDLINE | ID: mdl-23432263

ABSTRACT

We report the first observation of prompt neutral beam-ion losses due to nonresonant scattering induced by toroidal and reversed shear Alfvén eigenmodes in the DIII-D tokamak. The coherent losses are of full energy beam ions expelled from the plasma on their first poloidal orbit. The first-orbit loss mechanism causes enhanced, concentrated losses on the first wall exceeding nominal levels of prompt losses. The loss amplitude scales linearly with the mode amplitude. The data provide a novel and direct measure of the radial excursion or scatter of particles induced by individual modes and may shed light on the mechanism for the scattering of energetic particles in interstellar medium.

15.
Rev Sci Instrum ; 83(10): 10E329, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23126987

ABSTRACT

A synthetic diagnostic has been developed that reproduces the highly structured electron cyclotron emission (ECE) spectrum radiated from the edge region of H-mode discharges. The modeled dependence on local perturbations of the equilibrium plasma pressure allows for interpretation of ECE data for diagnosis of local quantities. Forward modeling of the diagnostic response in this region allows for improved mapping of the observed fluctuations to flux surfaces within the plasma, allowing for the poloidal mode number of coherent structures to be resolved. In addition, other spectral features that are dependent on both T(e) and n(e) contain information about pedestal structure and the electron energy distribution of localized phenomena, such as edge filaments arising during edge-localized mode (ELM) activity.

16.
Phys Rev Lett ; 109(3): 035003, 2012 Jul 20.
Article in English | MEDLINE | ID: mdl-22861863

ABSTRACT

From numerical simulation and analytical modeling it is shown that fast ions can resonate with plasma waves at fractional values of the particle drift-orbit transit frequency when the plasma wave amplitude is sufficiently large. The fractional resonances, which are caused by a nonlinear interaction between the particle orbit and the wave, give rise to an increased density of resonances in phase space which reduces the threshold for stochastic transport. The effects of the fractional resonances on spatial and energy transport are illustrated for an energetic particle geodesic acoustic mode but they apply equally well to other types of MHD activity.

17.
Phys Rev Lett ; 106(7): 075003, 2011 Feb 18.
Article in English | MEDLINE | ID: mdl-21405522

ABSTRACT

Two-dimensional images of electron temperature perturbations are obtained with electron cyclotron emission imaging (ECEI) on the DIII-D tokamak and compared to Alfvén eigenmode structures obtained by numerical modeling using both ideal MHD and hybrid MHD-gyrofluid codes. While many features of the observations are found to be in excellent agreement with simulations using an ideal MHD code (NOVA), other characteristics distinctly reveal the influence of fast ions on the mode structures. These features are found to be well described by the nonperturbative hybrid MHD-gyrofluid model TAEFL.

18.
Rev Sci Instrum ; 81(10): 10D305, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21033831

ABSTRACT

A numerical model describing the expected measurements of neutral beam prompt-losses by a newly commissioned fast ion loss detector (FILD) in DIII-D is presented. This model incorporates the well understood neutral beam deposition profiles from all eight DIII-D beamlines to construct a prompt-loss source distribution. The full range of detectable ion orbit phase space available to the FILD is used to calculate ion trajectories that overlap with neutral beam injection footprints. Weight functions are applied to account for the level of overlap between these detectable orbits and the spatial and velocity (pitch) properties of ionized beam neutrals. An experimental comparison is performed by firing each neutral beam individually in the presence of a ramping plasma current. Fast ion losses determined from the model are in agreement with measured losses.

19.
Rev Sci Instrum ; 81(10): 10D928, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21033956

ABSTRACT

A new electron cyclotron emission imaging diagnostic has been commissioned on the DIII-D tokamak. Dual detector arrays provide simultaneous two-dimensional images of T(e) fluctuations over radially distinct and reconfigurable regions, each with both vertical and radial zoom capability. A total of 320 (20 vertical×16 radial) channels are available. First data from this diagnostic demonstrate the acquisition of coherent electron temperature fluctuations as low as 0.1% with excellent clarity and spatial resolution. Details of the diagnostic features and capabilities are presented.

20.
Phys Rev Lett ; 101(18): 185001, 2008 Oct 31.
Article in English | MEDLINE | ID: mdl-18999835

ABSTRACT

Intense axisymmetric oscillations driven by suprathermal ions injected in the direction counter to the toroidal plasma current are observed in the DIII-D tokamak. The modes appear at nearly half the ideal geodesic acoustic mode frequency, in plasmas with comparable electron and ion temperatures and elevated magnetic safety factor (q_{min}>or=2). Strong bursting and frequency chirping are observed, concomitant with large (10%-15%) drops in the neutron emission. Large electron density fluctuations (n[over ]_{e}/n_{e} approximately 1.5%) are observed with no detectable electron temperature fluctuations, confirming a dominant compressional contribution to the pressure perturbation as predicted by kinetic theory. The observed mode frequency is consistent with a recent theoretical prediction for the energetic-particle-driven geodesic acoustic mode.

SELECTION OF CITATIONS
SEARCH DETAIL
...