Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 467: 133661, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38341890

ABSTRACT

Detection and quantification of various organic chemicals in the environment is critical to track their fate and control their levels. 2,4-Dichlorophenoxyacetic acid (2,4-D) is a widely applied phenoxy herbicide with potential toxicity to fish and other aquatic organisms. In this study, we address the need for improved detection of 2,4-D by introducing a novel analytical method for its quantification. This method relies on the selective extraction of 2,4-D using MIPs and their subsequent direct analysis using ambient plasma mass spectrometry. During the synthesis, MIPs with various degrees of glycidol (GLY) functionalization were obtained. Experimental data showed that MIPs with no GLY functionalization displayed the highest adsorption capacity. Conversely, MIPs with 30% GLY functionalization exhibited the greatest selectivity for 2,4-D, rendering them valuable for extraction of 2,4-D even in the presence of other contaminants. Finally, the obtained MIPs were applied for quantification of 2,4-D in various water samples through direct analysis using a specially designed ambient plasma mass spectrometry setup. This approach improved the detection limits by 200-fold compared to pure solution analysis. The quantification of 2,4-D in river water samples yielded highly satisfactory recoveries, demonstrating the effective utility of the proposed analytical setup for real-life water sample analysis.

2.
Polymers (Basel) ; 15(19)2023 Sep 24.
Article in English | MEDLINE | ID: mdl-37835917

ABSTRACT

Molecularly imprinted polymers (MIPs) encompass a diverse array of polymeric matrices that exhibit the unique capacity to selectively identify a designated template molecule through specific chemical moieties. Thanks to their pivotal attributes, including exceptional selectivity, extended shelf stability, and other distinct characteristics, this class of compounds has garnered interest in the development of highly responsive sensor systems. As a result, the incorporation of MIPs in crafting distinctive sensors and analytical procedures tailored for specific analytes across various domains has increasingly become a common practice within contemporary analytical chemistry. Furthermore, the range of polymers amenable to MIP formulation significantly influences the potential utilization of both conventional and innovative analytical methodologies. This versatility expands the array of possibilities in which MIP-based sensing can be employed in recognition systems. The following review summarizes the notable progress achieved within the preceding seven-year period in employing MIP-based sensing techniques for analyte determination.

3.
J Hazard Mater ; 450: 131068, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36857825

ABSTRACT

Rapid quantification of environmental pollutants is important for water quality control and environmental monitoring. In this work, we report the development of molecularly imprinted polymers (MIPs) obtained from poly(methyl vinyl ether-alt-maleic acid) polymer. The synthesized materials were used for selective preconcentration of 2,4-dichlorophenol, a priority pollutant which creates a threat to public health. The structure of poly(methyl vinyl ether-alt-maleic acid) was functionalized with 4-aminomethylpyridine (4-AMP) to incorporate pyridine groups presumably responsible for increased affinity towards 2,4-dichlorophenol. The synthesis was performed with different degree (10%, 20% and 30%) of 4-AMP functionalization to investigate the influence of pyridine group content on the final MIPs properties. The molecular imprinting process was conducted by amidation of polymers' anhydride groups with diethylenetriamine. Moreover, the experimental data indicated that maximum adsorption capacity was observed for the highest 4-AMP functionalization degree. Similarly, MIPs with the highest 4-AMP content proved to possess the highest selectivity towards the analyte. Finally, the functionalized MIPs were used to quantify 2,4-dichlorophenol by their direct introduction into a specially designed ambient mass spectrometry setup. The detection limits were improved significantly over the ones measured for pure analyte solution. The proposed analytical technique was used to quantify 2,4-dichlorophenol in river water and wastewater samples. Good recovery results were obtained, which proves that the method can be used for analysis of complex real-life samples.

4.
Polymers (Basel) ; 14(19)2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36236124

ABSTRACT

Poly(2-oxazoline)s are the synthetic polymers that are the products of the cationic ring-opening polymerization (CROP) of 2-oxazoline monomers. Due to their beneficial properties, from which biocompatibility, stealth behavior, high functionalization possibilities, low dispersity, stability, nonionic character, and solubility in water and organic solvents should be noted, they have found many applications and gained enormous interest from scientists. Additionally, with high versatility attainable through copolymerization or through post-polymerization modifications, this class of polymeric systems has been widely used as a polymeric platform for novel biomedical applications. The chemistry of polymers significant expanded into biomedical applications, in which polymeric networks can be successfully used in pharmaceutical development for tissue engineering, gene therapies, and also drug delivery systems. On the other hand, there is also a need to create 'smart' polymer biomaterials, responsive to the specified factor, that will be sensitive to various environmental stimuli. The commonly used stimuli-responsive biomedical materials are based mostly on temperature-, light-, magnetic-, electric-, and pH-responsive systems. Thus, creating selective and responsive materials that allow personalized treatment is in the interest of the scientific world. This review article focuses on recent discoveries by Polish scientists working in the field of stimuli-responsive poly(2-oxazoline)s, and their work is compared and contrasted with results reported by other world-renowned specialists.

5.
Polymers (Basel) ; 14(5)2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35267850

ABSTRACT

Imprinted materials possess designed cavities capable of forming selective interactions with molecules used in the imprinting process. In this work, we report the synthesis of 5-fluorouracil (5-FU)-imprinted microparticles and their application in prolonged drug delivery. The materials were synthesized using either ethylene glycol dimethacrylate (EGDMA) or trimethylolpropane trimethacrylate (TRIM) cross-linkers. For both types of polymers, methacrylic acid was used as a functional monomer, whereas 2-hydroxyethyl methacrylate was applied to increase the final materials' hydrophilicity. Adsorption isotherms and adsorption kinetics were investigated to characterize the interactions that occur between the materials and 5-FU. The microparticles synthesized using the TRIM cross-linker showed higher adsorption properties towards 5-FU than those with EGDMA. The release kinetics was highly dependent upon the cross-linker and pH of the release medium. The highest cumulative release was obtained for TRIM-based microparticles at pH 7.4. The IC50 values proved that 5-FU-loaded TRIM-based microparticles possess cytotoxic activity against HeLa cell lines similar to pure 5-FU, whereas their toxicity towards normal HDF cell lines was ca. three times lower than for 5-FU.

SELECTION OF CITATIONS
SEARCH DETAIL
...