Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
FEMS Microbiol Lett ; 369(1)2022 10 14.
Article in English | MEDLINE | ID: mdl-36073497

ABSTRACT

Microbes produce and respond to a range of structurally and functionally diverse volatiles. Many microbial volatiles have antimicrobial properties. Since volatiles can diffuse through complex 3D systems like spider nests, they are promising pathogen protection for social arthropods. Here, we analyzed the volatilomes of five nest microbiome members of the Namibian, social spider Stegodyphus dumicola, namely the bacteria Massilia sp. IC2-278, Massilia sp. IC2-477, Sphingomonas sp. IC-11, Streptomyces sp. IC-207, and the fungus Aureobasidium sp. CE_32, and tested their antimicrobial activity against two putative spider pathogens, namely Bacillus thuringiensis and Purpureocillium lilacinum. Most nest microbiome members released volatilomes with antibacterial and/or antifungal activities under in vitro conditions. The analysis of their volatilomes using GC/Q-TOF revealed that they include numerous antimicrobial volatiles. We tested the antimicrobial activity of five pure volatile compounds found in the volatilomes and revealed that all of them were antibacterial and/or antifungal. We could not identify the same antimicrobial volatiles as in a previous in situ study, but our results indicate that social spider-associated microorganisms as a source of antimicrobial volatiles are important for pathogen inhibition. Additionally, we showed the influence of the volatilomes on the antibiotic sensitivity of B. thuringiensis offering novel approaches to counter antibiotic resistance.


Subject(s)
Anti-Infective Agents , Microbiota , Spiders , Streptomyces , Animals , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Antifungal Agents/pharmacology
2.
Syst Appl Microbiol ; 44(4): 126222, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34146923

ABSTRACT

Social spiders of the species Stegodyphus dumicola live in communal nests with hundreds of individuals and are characterized by extremely low species-wide genetic diversity. The lack of genetic diversity in combination with group living imposes a potential threat for infection by pathogens. We therefore proposed that specific microbial symbionts inhabiting the spider nests may provide antimicrobial defense. To compare the bacterial and fungal diversity in 17 nests from three different locations in Namibia, we used 16S rRNA gene and internal transcribed spacer (ITS2) sequencing. The nest microbiomes differed between geographically distinct spider populations and appeared largely determined by the local environment. Nevertheless, we identified a core microbiome consisting of four bacterial genera (Curtobacterium, Modestobacter, Sphingomonas, Massilia) and four fungal genera (Aureobasidium, Didymella, Alternaria, Ascochyta), which likely are selected from surrounding soil and plants by the nest environment. We did not find indications for a strain- or species-specific symbiosis in the nests. Isolation of bacteria and fungi from nest material retrieved a few bacterial strains with antimicrobial activity but a number of antimicrobial fungi, including members of the fungal core microbiome. The significance of antimicrobial taxa in the nest microbiome for host protection remains to be shown.


Subject(s)
Bacteria/classification , Fungi/classification , Microbiota , Spiders , Animals , DNA, Ribosomal Spacer/genetics , Namibia , RNA, Ribosomal, 16S/genetics , Spiders/microbiology
3.
Antonie Van Leeuwenhoek ; 114(3): 325-335, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33543432

ABSTRACT

Some social arthropods engage in mutualistic symbiosis with antimicrobial compound-producing microorganisms that provide protection against pathogens. Social spiders live in communal nests and contain specific endosymbionts with unknown function. Bacteria are also found on the spiders' surface, including prevalent staphylococci, which may have protective potential. Here we present the genomic and phenotypic characterization of strain i1, isolated from the surface of the social spider Stegodyphus dumicola. Phylogenomic analysis identified i1 as novel strain of Staphylococcus sciuri within subgroup 2 of three newly defined genomic subgroups. Further phenotypic investigations showed that S. sciuri i1 is an extremophile that can grow at a broad range of temperatures (4 °C-45 °C), high salt concentrations (up to 27%), and has antimicrobial activity against closely related species. We identified a lactococcin 972-like bacteriocin gene cluster, likely responsible for the antimicrobial activity, and found it conserved in two of the three subgroups of S. sciuri. These features indicate that S. sciuri i1, though not a specific symbiont, is well-adapted to survive on the surface of social spiders and may gain a competitive advantage by inhibiting closely related species.


Subject(s)
Spiders , Animals , Anti-Bacterial Agents/pharmacology , Staphylococcus/genetics , Temperature
4.
Microbiol Resour Announc ; 8(25)2019 Jun 20.
Article in English | MEDLINE | ID: mdl-31221641

ABSTRACT

We present the high-quality draft genome sequence of Bacillus subtilis SB-14, isolated from the Namibian social spider Stegodyphus dumicola In accordance with its antimicrobial activity, both known and potentially novel antimicrobial biosynthetic gene clusters were identified in the genome of SB-14.

5.
Sci Rep ; 8(1): 266, 2018 01 10.
Article in English | MEDLINE | ID: mdl-29321635

ABSTRACT

Finegoldia magna, a Gram-positive anaerobic coccus, is an opportunistic pathogen, associated with medical device-related infections. F. magna is the only described species of the genus Finegoldia. We report the analysis of 17 genomes of Finegoldia isolates. Phylogenomic analyses showed that the Finegoldia population can be divided into two distinct clades, with an average nucleotide identity of 90.7%. One clade contains strains of F. magna, whereas the other clade includes more heterogeneous strains, hereafter tentatively named "Finegoldia nericia". The latter species appears to be more abundant in the human microbiome. Surface structure differences between strains of F. magna and "F. nericia" were detected by microscopy. Strain-specific heterogeneity is high and previously identified host-interacting factors are present only in subsets of "F. nericia" and F. magna strains. However, all genomes encode multiple host factor-binding proteins such as albumin-, collagen-, and immunoglobulin-binding proteins, and two to four copies of CAMP (Christie-Atkins-Munch-Petersen) factors; in accordance, most strains show a positive CAMP reaction for co-hemolysis. Our work sheds new light of the genus Finegoldia and its ability to bind host components. Future research should explore if the genomic differences identified here affect the potential of different Finegoldia species and strains to cause opportunistic infections.


Subject(s)
Genetic Heterogeneity , Genome, Bacterial , Genotype , Gram-Positive Cocci/classification , Gram-Positive Cocci/genetics , Base Composition , Gene Order , Genetic Loci , Genome Size , Genomics/methods , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Cocci/pathogenicity , Gram-Positive Cocci/ultrastructure , Host-Pathogen Interactions , Phylogeny , Virulence Factors/genetics
6.
Front Microbiol ; 8: 2241, 2017.
Article in English | MEDLINE | ID: mdl-29201018

ABSTRACT

Inflammation is one of the hallmarks of prostate cancer. The origin of inflammation is unknown, but microbial infections are suspected to play a role. In previous studies, the Gram-positive, low virulent bacterium Cutibacterium (formerly Propionibacterium) acnes was frequently isolated from prostatic tissue. It is unclear if the presence of the bacterium represents a true infection or a contamination. Here we investigated Cutibacterium acnes type II, also called subspecies defendens, which is the most prevalent type among prostatic C. acnes isolates. Genome sequencing of type II isolates identified large plasmids in several genomes. The plasmids are highly similar to previously identified linear plasmids of type I C. acnes strains associated with acne vulgaris. A PCR-based analysis revealed that 28.4% (21 out of 74) of all type II strains isolated from cancerous prostates carry a plasmid. The plasmid shows signatures for conjugative transfer. In addition, it contains a gene locus for tight adherence (tad) that is predicted to encode adhesive Flp (fimbrial low-molecular weight protein) pili. In subsequent experiments a tad locus-encoded putative pilin subunit was identified in the surface-exposed protein fraction of plasmid-positive C. acnes type II strains by mass spectrometry, indicating that the tad locus is functional. Additional plasmid-encoded proteins were detected in the secreted protein fraction, including two signal peptide-harboring proteins; the corresponding genes are specific for type II C. acnes, thus lacking from plasmid-positive type I C. acnes strains. Further support for the presence of Flp pili in C. acnes type II was provided by electron microscopy, revealing cell appendages in tad locus-positive strains. Our study provides new insight in the most prevalent prostatic subspecies of C. acnes, subsp. defendens, and indicates the existence of Flp pili in plasmid-positive strains. Such pili may support colonization and persistent infection of human prostates by C. acnes.

7.
Microorganisms ; 5(3)2017 Sep 12.
Article in English | MEDLINE | ID: mdl-28895889

ABSTRACT

Hyaluronic acid (HA) and other glycosaminoglycans are extracellular matrix components in the human epidermis and dermis. One of the most prevalent skin microorganisms, Propionibacterium acnes, possesses HA-degrading activity, possibly conferred by the enzyme hyaluronate lyase (HYL). In this study, we identified the HYL of P. acnes and investigated the genotypic and phenotypic characteristics. Investigations include the generation of a P. acneshyl knockout mutant and HYL activity assays to determine the substrate range and formed products. We found that P. acnes employs two distinct variants of HYL. One variant, HYL-IB/II, is highly active, resulting in complete HA degradation; it is present in strains of the phylotypes IB and II. The other variant, HYL-IA, has low activity, resulting in incomplete HA degradation; it is present in type IA strains. Our findings could explain some of the observed differences between P. acnes phylotype IA and IB/II strains. Whereas type IA strains are primarily found on the skin surface and associated with acne vulgaris, type IB/II strains are more often associated with soft and deep tissue infections, which would require elaborate tissue invasion strategies, possibly accomplished by a highly active HYL-IB/II.

SELECTION OF CITATIONS
SEARCH DETAIL
...