Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Foods ; 13(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38611400

ABSTRACT

Ginger (Zingiber officinale Roscoe) is a perishable commodity that requires proper processing to maintain its bioactivity. This study evaluated the effect of different air-drying temperatures (50 °C, 60 °C, and 70 °C) on ginger's drying kinetics and quality attributes. For an enhanced understanding of the drying kinetics, we employed a detailed approach by combining an existing drying model (namely, Midilli) with the Arrhenius model. This combined model facilitates a thorough analysis of how temperature and time concurrently affect the moisture ratio, offering more profound insights into the drying mechanism. A higher drying rate was achieved at 70 °C, yet elevated drying temperatures could compromise the quality attributes of ginger slices. Ginger slices dried at 50 °C displayed improved physicochemical properties and less color browning. The evaluation of the bioactivity profile of resultant ginger extracts also revealed higher total phenolic contents (1875.87 ± 31.40 mg GAE/100 g) and DPPH radical scavenging activity (18.2 ± 0.9 mg TE/kg) in 50 °C treated ginger samples. Meanwhile, the hydroethanolic mixture (70% ethanol) was also reorganized with better extraction efficiency than water and MWF (a ternary blend of methanol, water, and formic acid) solution. The promising outcomes of this study endorse the influence of drying temperature on the quality characteristics and bioactive profile of ginger and the selection of suitable extraction solvents to acquire phenolic-rich extract.

2.
J Colloid Interface Sci ; 662: 19-30, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38335736

ABSTRACT

HYPOTHESIS: Secondary drops (SDs) generated when falling drops impact a same-liquid bath can potentially generate antibubbles. Different mechanisms of antibubble formation can be identified and their size and formation probability (PAb) can be predicted. EXPERIMENTS: Surfactant solutions were dropped from various heights using a highly stable pulseless microfluidic pump in a same-liquid bath. The impact was recorded using a high-speed camera. The formation of SDs and antibubbles as well as their sizes were evaluated considering the falling-drop height (HFD) and dimensionless parameters. FINDINGS: This study reports new mechanisms for antibubble formation from SDs. A decrease in the surface tension yielded a thinner central jet, thereby yielding more SDs. Larger values of the HFD, impact velocity (U), and Weber number (We) increased the SD size and decreased the SD count; the increase in size increased the antibubble size. The number of SDs correlated with the formation of two distinct antibubbles or a single (coalesced) antibubble. The plots for PAb versus HFD, U, and We exhibited two distinct peaks. A moderate increase in the surfactant concentration enhanced PAb in the first regime, whereas an excessive concentration limited antibubble formation. Artificial neural modeling can successfully predict antibubble formation. These findings provide valuable insights for the research on controlled antibubble generation.

3.
Pharmaceutics ; 15(12)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38140097

ABSTRACT

Developing carriers capable of efficiently transporting both hydrophilic and lipophilic payloads is a captivating focus within the pharmaceutical and drug delivery research domain. Antibubbles, constituting an innovative encapsulation system designed for drug delivery purposes, have garnered scientific interest thanks to their distinctive water-in-air-in-water (W1/A/W2) structure. However, in contrast to their precursor, i.e., nanoparticle-stabilized W1/O/W2 double emulsion, traditional antibubbles lack the ability to accommodate a lipophilic payload, as the intermediary (volatile) oil layer of the emulsion is replaced by air during the antibubble fabrication process. Therefore, here, we report the fabrication of triple-emulsion-based antibubbles (O1/W1/A/W2), in which the inner aqueous phase was loaded with a nanoemulsion stabilized by various proteins, including whey, soy, or pea protein isolates. As model drugs, we employed the dyes Nile red in the oil phase and methylene blue in the aqueous phase. The produced antibubbles were characterized regarding their size distribution, entrapment efficiency, and stability. The produced antibubbles demonstrated substantial entrapment efficiencies for both lipophilic (ranging from 80% to 90%) and hydrophilic (ranging from 70% to 82%) components while also exhibiting an appreciable degree of stability during an extended rehydration period of two weeks. The observed variations among different antibubble variants were primarily attributed to differences in protein concentration rather than the type of protein used.

4.
Antioxidants (Basel) ; 12(11)2023 Nov 18.
Article in English | MEDLINE | ID: mdl-38001868

ABSTRACT

Ginger is an herbaceous and flowering plant renowned for its rhizome, which is widely employed as both a spice and an herb. Since ancient times, ginger has been consumed in folk medicine and traditional cuisines for its favorable health effects. Different in vitro and in vivo studies have disclosed the advantageous physiological aspects of ginger, primarily due to its antioxidant, anti-inflammatory, antimicrobial, and anti-carcinogenic properties. These health-promoting features are linked to the variety of bioactive compounds that are present in ginger. Following the advancement in consumer awareness and the industrial demand for organic antioxidants and functional ingredients, the application of ginger and its derivatives has been broadly investigated in a wide range of food products. The prominent features transmitted by ginger into different food areas are antioxidant and nutraceutical values (bakery); flavor, acceptability, and techno-functional characteristics (dairy); hedonic and antimicrobial properties (beverages); oxidative stability, tenderization, and sensorial attributes (meat); and shelf life and sensorial properties (film, coating, and packaging). This review is focused on providing a comprehensive overview of the tendencies in the application of ginger and its derivatives in the food industry and concurrently briefly discusses the beneficial aspects and processing of ginger.

5.
J Colloid Interface Sci ; 652(Pt B): 2054-2065, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37696059

ABSTRACT

HYPOTHESIS: Hydrophobized fumed silica particles were previously reported for producing antibubbles that are quite stable in neutral as well as in acidic media. To produce acid-responsive antibubbles (e.g., for gastric drug delivery), the silica nanoparticles must be replaced by suitable particles, e.g., calcium carbonate (CaCO3), which can degrade at low pH to release the encapsulated drug. EXPERIMENTS: Two variants of CaCO3-stabilized antibubbles were prepared (by using CaCO3 particles pre-coated with stearic acid, or by using native CaCO3 particles in combination with sodium stearoyl lactylate) and drug release was compared with classic antibubbles produced with hydrophobized fumed silica particles. FINDINGS: CaCO3 particles (pre-coated with stearic acid) can be used to produce stable antibubbles, which provided an entrapment efficiency of a model drug (methylene blue, MB) of around 85%. A burst release of MB (∼60%) from the antibubbles was observed at pH 2 (i.e., the pH of the stomach), which was further increased to 80% during the next 30 min. On the contrary, at neutral pH, about 70% of the drug remained encapsulated for at least 2 h. We further demonstrated that the acidic conditions led to the desorption of CaCO3 particles from the air-liquid interface resulting in the destabilization of the antibubbles and the release of drug-containing cores.

6.
Foods ; 12(9)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37174375

ABSTRACT

Double emulsions (W1/O/W2) have long been used in the food and pharmaceutical industries to encapsulate hydrophobic and hydrophilic drugs and bioactive compounds. This study investigated the effect of different types of emulsifiers (plant- vs. animal-based proteins) on the encapsulation properties of Mentha piperita leaf extract (MLE) prepared using the double emulsion method. Using response surface methodology, the effect of ultrasound-assisted extraction conditions (amplitude 20-50%; time 10-30 min; ethanol concentration 70-90%) on the total phenolic content (TPC) and antioxidant activity (percent inhibition) of the MLE was studied. MLE under optimized conditions (ethanol concentration 76%; amplitude 39%; time 30 min) had a TPC of 62.83 mg GA equivalents/g and an antioxidant activity of 23.49%. The optimized MLE was encapsulated using soy, pea, and whey protein isolates in two emulsifying conditions: 4065× g/min and 4065× g/30 s. The droplet size, optical images, rheology, and encapsulation efficiency (EE%) of the different encapsulated MLEs were compared. The W1/O/W2 produced at 4065× g/min exhibited a smaller droplet size and higher EE% and viscosity than that prepared at 4065× g/30 s. The higher EE% of soy and pea protein isolates indicated their potential as an effective alternative for bioactive compound encapsulation.

7.
Adv Colloid Interface Sci ; 305: 102688, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35526307

ABSTRACT

Antibubbles are unusual physical objects consisting of a liquid core(s) surrounded by a thin air film/shell while in a bulk liquid. Antibubbles carry two air-liquid interfaces, i.e., one with the inner liquid and the other with the outer liquid. The distinct structure of antibubbles makes them quite attractive for drug and therapeutic delivery, although their potential applications have not been realized so far. The major challenge in this regard is a short-lived span of antibubbles, which is usually in the order of a few minutes to a few hours based on the stabilization mechanism used. We present a critical overview of different techniques that can be used to generate antibubbles. This includes a more commonly applied conventional approach in which the air-film is created through surface entrapment when a liquid jet/drop falls on a bulk liquid. The other available options rely on entirely different mechanisms for antibubble formation, for instance, through drop encapsulation by a submerged air bubble, or through evaporation/sublimation of volatile oil from a W/O/W double emulsion. Furthermore, the mechanisms of antibubble formation and collapse, and the factors affecting their stability have been discussed explicitly; and wherever required, the concept is correlated to other allied physical objects such as bubbles, liquid marbles, etc. Finally, the potential applications, research gaps in the existing knowledge, and some directions for future research are provided towards the end of this article.


Subject(s)
Emulsions
8.
Exp Gerontol ; 162: 111763, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35248667

ABSTRACT

Aging is a collection of changes that contribute to decline in maximum function and ultimately death of an organism. This process is controlled and initiated by several mechanisms including telomere shortening, oxidative stress, AMP-activated protein kinase and sirt-1. Several therapies have been reported to relieve the process of aging. Among these, diet therapy seems to be the most appropriate approach. Fruits are an important part of regular diet. They contain several compounds which have potential to handle the problem of aging and its related disorders. The present paper provides a comprehensive review on different factors present in various fruits related to the process of aging together with their antiaging mechanisms.


Subject(s)
Aging , Fruit , Telomere Shortening , AMP-Activated Protein Kinases/metabolism , Aging/metabolism , Aging/physiology , Oxidative Stress/physiology , Sirtuin 1/metabolism , Telomere , Telomere Shortening/physiology
9.
Adv Colloid Interface Sci ; 290: 102393, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33770649

ABSTRACT

Premix membrane emulsification (PME) is a pressure driven process of droplet breakup, caused by their motion through membrane pores. The process is widely used for high-throughput production of sized-controlled emulsion droplets and microparticles using low energy inputs. The resultant droplet size depends on numerous process, membrane, and formulation factors such as flow velocity in pores, number of extrusions, initial droplet size, internal membrane geometry, wettability of pore walls, and physical properties of emulsion. This paper provides a comprehensive review of different mechanisms of droplet deformation and breakup in membranes with versatile pore morphologies including sintered glass and ceramic filters, SPG and polymeric membranes with sponge-like structures, micro-engineered metallic membranes with ordered straight-through pore arrays, and dynamic membranes composed of unconsolidated particles. Fundamental aspects of droplet motion and breakup in idealized pore networks have also been covered including droplet disruption in T-junctions, channel constrictions, and obstructed channels. The breakup mechanisms due to shear interactions with pore walls and localized shear (direct breaking) or due to interfacial tension effects and Rayleigh-Plateau instability (indirect breaking) are systematically discussed based on recent experimental and numerical studies. Non-dimensional droplet size correlations based on capillary, Weber, and Ohnesorge numbers are also presented.

10.
Food Sci Biotechnol ; 29(4): 513-519, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32296562

ABSTRACT

Onion and ginger are rich sources of bioactive compounds which are lost during conventional drying process. The present study was designed to optimize the novel Microwave Assisted Drying and Extraction technique (MADE) for simultaneous drying and extraction/recovery of bioactive compounds from model food products. The time required for drying of samples was 11 (onion) and 16 (ginger) minutes with recovery yield of 87% (onion) and 85% (ginger). The drying time was reduced to 100 times compared to hot air drying and moisture ratio of dried samples was best described by Midilli model. The diffusivities of onion and ginger slices were 1.27 e-11 and 1.43 e-11 m2/s, respectively. Moreover, microwave-based extraction was compared with conventional one. The results of antioxidant activity and total phenolic contents of condensates obtained through MADE were higher compared to conventional method. In short, MADE exhibited better yield of extraction and drying properties compared to conventional methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...