Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Control Release ; 365: 491-506, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38030083

ABSTRACT

Nanoparticle (NP) formulations are inherently polydisperse making their structural characterization and justification of specifications complex. It is essential, however, to gain an understanding of the physico-chemical properties that drive performance in vivo. To elucidate these properties, drug-containing poly(lactic acid) (PLA)-poly(ethylene glycol) (PEG) block polymeric NP formulations (or PNPs) were sub-divided into discrete size fractions and analyzed using a combination of advanced techniques, namely cryogenic transmission electron microscopy, small-angle neutron and X-ray scattering, nuclear magnetic resonance, and hard-energy X-ray photoelectron spectroscopy. Together, these techniques revealed a uniquely detailed picture of PNP size, surface structure, internal molecular architecture and the preferred site(s) of incorporation of the hydrophobic drug, AZD5991, properties which cannot be accessed via conventional characterization methodologies. Within the PNP size distribution, it was shown that the smallest PNPs contained significantly less drug than their larger sized counterparts, reducing overall drug loading, while PNP molecular architecture was critical in understanding the nature of in vitro drug release. The effect of PNP size and structure on drug biodistribution was determined by administrating selected PNP size fractions to mice, with the smaller sized NP fractions increasing the total drug-plasma concentration area under the curve and reducing drug concentrations in liver and spleen, due to greater avoidance of the reticuloendothelial system. In contrast, administration of unfractionated PNPs, containing a large population of NPs with extremely low drug load, did not significantly impact the drug's pharmacokinetic behavior - a significant result for nanomedicine development where a uniform formulation is usually an important driver. We also demonstrate how, in this study, it is not practicable to validate the bioanalytical methodology for drug released in vivo due to the NP formulation properties, a process which is applicable for most small molecule-releasing nanomedicines. In conclusion, this work details a strategy for determining the effect of formulation variability on in vivo performance, thereby informing the translation of PNPs, and other NPs, from the laboratory to the clinic.


Subject(s)
Nanoparticles , Polyethylene Glycols , Mice , Animals , Polyethylene Glycols/chemistry , Tissue Distribution , Polymers/chemistry , Polyesters/chemistry , Nanoparticles/chemistry , Particle Size , Drug Carriers/chemistry
2.
Nanomaterials (Basel) ; 13(23)2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38063716

ABSTRACT

Organic light-emitting diodes (OLEDs) have emerged as a promising technology for various applications owing to their advantages, including low-cost fabrication, flexibility, and compatibility. However, a limited lifetime hinders the practical application of OLEDs in electronic devices. OLEDs are prone to degradation effects during operation, resulting in a decrease in device lifetime and performance. This review article aims to provide an exciting overview of OLED degradation effects, highlighting the various degradation mechanisms. Subsequently, an in-depth exploration of OLEDs degradation mechanisms and failure modes is presented. Internal and external processes of degradation, as well as the reactions and impacts of some compounds on OLED performance, are then elucidated. To overcome degradation challenges, the review emphasizes the importance of utilizing state-of-the-art analytical techniques and the role of these techniques in enhancing the performance and reliability of OLEDs. Furthermore, the review addresses the critical challenges of lifetime and device stability, which are crucial for the commercialization of OLEDs. This study also explores strategies to improve OLEDs' lifetime and stability, such as using barrier layers and encapsulation techniques. Overall, this article aims to contribute to the advancement of OLED technology and its successful integration into diverse electronic applications.

3.
Molecules ; 27(9)2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35565993

ABSTRACT

Silybum marianum L. is a therapeutic plant belonging to the family Asteraceae, which has exhibited silymarin, a principal component used to cure various physiochemical disorders. The study appraised the phytochemical analysis, antioxidant activity and chemical analysis of an extract from the seed, stem and leaves. Qualitative and quantitative phytochemical analysis was evaluated by the Folin-Ciocalteu reagent method and aluminum chloride colorimetric method, respectively. While the antioxidant activity was determined by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and acetate buffer in ferric chloride (FRAP) assay, respectively, the chemical profile was evaluated by Gas Chromatography-Mass Spectrometry (GC-MS) assay. The study outcomes identified that alkaloids, glycosides, flavonoids, terpenoids, steroids and catcholic tannins were present in seed, stem and leaves extracts except for saponins and Gallic tannins. Whereas, phenols were absent only in seed extract. Quantitative analysis revealed the presence of phenols and flavonoids in appreciable amounts of 21.79 (GAE/g), 129.66 (QE/g) and 17.29 (GAE/g), 114.29 (QE/g) from the leaves and stem extract, respectively. Similarly, all extracts expressed reasonable DPPH inhibition (IC50) and FRAP reducing power such as 75.98, 72.39 and 63.21% and 46.60, 51.40 and 41.30 mmol/g from the seeds, stem and leaves extract, respectively. Additionally, chemical analysis revealed the existence of 6, 8 and 9 chemical compounds from the seeds, stem and leaves extract, respectively, corresponding to 99.95, 99.96 and 98.89% of the whole extract. The chemical compound, Dibutyl phthalate was reported from all extracts while, Hexadecanoic acid, methyl ester and Silane, (1,1-dimethylethyl), dimethyl (phenylmethoxy) were reported only from the seed and leaves extract. Moreover, Methyl stearate was also a major compound reported from all extracts except for seed extract. It is demonstrable that extracts from different parts of S. marianum possess significant antioxidant activity, as well as valuable chemical compounds accountable for therapeutic effects that might be incorporated as an alternative to synthetic chemical agents.


Subject(s)
Antioxidants , Silybum marianum , Antioxidants/chemistry , Flavonoids/analysis , Flavonoids/pharmacology , Gas Chromatography-Mass Spectrometry , Phenols/analysis , Phytochemicals/chemistry , Plant Extracts/chemistry , Tannins
4.
J Phys Chem Lett ; 11(1): 7-13, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31821758

ABSTRACT

Cation exchange has been a successful methodology for tuning the bandgaps of nanomaterials, while the most popular protocol in the toluene/methanol system lacks precise compositional control due to its inherent poor solvent compatibility. We herein report an alternative cation exchange route in N,N-dimethylformamide (DMF) solvent for converting preformed colloidal CdTe nanowires into CdxM1-xTe (M = Pb2+, Zn2+, Ag+, Hg2+) nanowires with good batch-to-batch reproducibility. The resulting CdxM1-xTe nanowires show a tunable bandgap from 2.26 to 0.63 eV, and the energy levels of these nanowires can be finely tuned. Furthermore, a comparative study for the cation exchange of CdTe nanowires with Pb2+ ions in toluene/methanol and DMF illustrated that the reduction of Cd2+ extraction and the Pb2+ introduction barrier accounts for precise compositional control. The cation exchange reaction in the DMF phase provides an efficient way to obtain nanomaterials with precise composition control. Moreover, these available high-quality colloidal semiconductor nanowires also pave the way for near-infrared device exploration.

5.
Int J Pharm ; 548(1): 530-539, 2018 Sep 05.
Article in English | MEDLINE | ID: mdl-30009983

ABSTRACT

In this work we evaluate the effect of polymer composition and architecture of (PEGylated) polyesters on particle size and paclitaxel (PTX) loading for particles manufactured via microfluidic-assisted, continuous-flow nanoprecipitation using two microfluidic chips with different geometries and mixing principles. We have prepared poly (d,l-lactic acid-co-caprolactone) (PLCL) from ring-opening polymerization (ROP) of LA and CL mixtures and different (macro) initiators (namely, 1-dodecanol, a MeO-PEG-OH, and a 4-armed star PEG-OH), rendering polyesters that vary in monomer composition (i.e. LA/CL ratios) and architecture (i.e. linear vs 4-armed star). Continuous-flow nanoprecipitation was assayed using two microfluidic chips: a cross-flow chip with a X-shaped mixing junction (2D laminar flow focusing) and a micromixer featuring a Y-shaped mixing junction and a split and recombine path (2D laminar flow focusing convinced with stream lamination for faster mixing). Nanoparticle formulations were produced with Z-average sizes in the range of 30-160 nm, although size selectivity could be seen for different polymer/chip combinations; for instance, smaller particles were obtained with Y-shaped micromixer (30-120 nm), specially for the PEGylated polyesters (30-50 nm), whereas the cross-flow chip systematically produced larger particles (80-160 nm). Loading of the anti-cancer drug paclitaxel (PTX) was also heavily influenced not only by the nature of the polyester, but also by the geometry of the microfluidic chip; higher drug loadings were obtained with the cross-flow reactor and the star block copolymers. Finally, decreasing the LA/CL ratio generally had a positive effect on drug loading.


Subject(s)
Antineoplastic Agents, Phytogenic/chemistry , Microfluidics , Nanoparticles/chemistry , Paclitaxel/chemistry , Polyesters/chemistry , Polyethylene Glycols/chemistry , Chemical Precipitation , Drug Compounding/methods , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...