Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Saudi J Biol Sci ; 28(10): 5963-5970, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34588913

ABSTRACT

Antimicrobial resistance (AMR) is a major health crisis globally. Migratory birds could be a potential source for antibiotic resistant (ABR) bacteria. Not much is known about their role in the transmission of ABR in Bangladesh. In this study, a total of 66 freshly dropped fecal materials of migratory birds were analyzed. Bacterial isolation and identification were based on cultural properties, biochemical tests, and polymerase chain reaction (PCR). The disk diffusion method was employed to evaluate antibiogram profiles. By PCR, out of 66 samples, the detection rate of Enterococcus spp. (60.61%; 95% confidence interval: 48.55-71.50%) was found significantly higher than Salmonella spp. (21.21%; 95% CI: 13.08-32.51%) and Vibrio spp. (39.40%; 95% CI: 28.50-51.45%). Enterococcus isolates were frequently found resistant (100-40%) to ampicillin, streptomycin, meropenem, erythromycin, and gentamicin; Salmonella isolates were frequently resistant (72-43%) to chloramphenicol, tetracycline, ampicillin, streptomycin, and erythromycin; and Vibrio spp. isolates were frequently resistant (77-31%) to vancomycin, ampicillin, erythromycin, tetracycline, and streptomycin. In addition, 60% (95% CI: 44.60-73.65%) Enterococcus spp., 85.71% (95% CI: 60.06-97.46%) Salmonella spp., and 76.92% (95% CI: 57.95-88.97%) Vibrio spp. isolates were multi-drug resistant (MDR) in nature. Three isolates (one from each bacterium) were found resistant against six classes of antibiotics. The bivariate analysis revealed strong associations (both positive and negative) between several antibiotic pairs which were resistant to isolated organisms. To the best of our knowledge, this is the first study in detecting MDR Enterococcus spp., Salmonella spp., and Vibrio spp. from migratory birds travelling to Bangladesh. Frequent detection of MDR bacteria from migratory birds travelling to Bangladesh suggests that these birds have the potential to carry and spread ABR bacteria and could implicate potential risks to public health. We recommend that these birds should be kept under an AMR surveillance program to minimize the potential risk of contamination of the environment with ABR as well as to reduce their hazardous impacts on health.

2.
J Adv Vet Anim Res ; 7(2): 338-344, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32607367

ABSTRACT

OBJECTIVES: Migratory birds play a major role in the transmission of pathogens globally, but still their role in the transmission of fungi in Bangladesh is not known. The present study was carried out for the isolation and molecular detection of fungi including Aspergillus from migratory birds traveling to Bangladesh. MATERIALS AND METHODS: A total of 50 fecal samples were collected from BaojaniBaor, Magura, and areas close to Jahangirnagar University, Savar. The isolation of fungus was based on culture on Potato Dextrose Agar (PDA), followed by staining, morphology, and molecular detection using polymerase chain reaction (PCR). RESULTS: Among 50 samples, 40 showed positive for fungal growth on PDA, of which 30 yield only yeast-like colonies, five only molds, and five yielded both yeast and molds. The isolated molds produced various pigmented colonies, namely, black, whitish, grayish, olive green, and yellow. Among 10 molds, six were confirmed as fungi by PCR using genus-specific primers such as ITS1 and ITS4. Later, of these six fungi, five were confirmed as Aspergillus by PCR with primers such as ASAP1 and ASAP2 specific for Aspergillus genus. Therefore, the overall occurrence of Aspergillus was 10% (5/50). PCR specific for Aspergillus fumigatus and Aspergillus niger failed to produce specific PCR amplicon, suggesting that the isolated Aspergillus belongs to other groups. CONCLUSION: This is the first report describing the isolation and molecular detection of Aspergillus from fecal samples of migratory birds in Bangladesh. The present findings confirm that migratory birds are potential source for Aspergillus and other fungus in Bangladesh.

3.
J Adv Vet Anim Res ; 7(2): 360-366, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32607369

ABSTRACT

OBJECTIVE: This research work was conducted for the molecular characterization of the circulating foot-and-mouth disease (FMD) virus in Bangladesh and revealed out their serotype. MATERIALS AND METHODS: The VP1 gene of six field isolates of FMD virus (FMDV) serotypes (two serotypes O, two serotypes A, and two serotypes Asia 1) was subjected for sequencing and phylogenetic analysis. Neighbor-joining trees were constructed by using the Molecular Evolutionary Genetics Analysis 6, having the field nucleotide sequences of FMDV and related sequences available in the GenBank. RESULTS: The nucleotide sequences of the VP1 genes of serotypes O, A, and Asia-1 of the isolates revealed that overall isolates were 91%-100% similar to the isolates reported from Bangladesh and other neighboring countries. Among the isolates reported from Bangladesh, serotype O had 98%-100% identity, serotype A had 91%-100% identity, and serotype Asia-1 had 94%-100% identity. A phylogenetic analysis revealed that the FMDV serotype O PanAsia-02 sub-lineage was confirmed in Bangladesh under the Middle East-South Asian (ME-SA) topotype. On the other hand, we identified genotype VII (18) of Asia topotype (serotype A) and lineage C (serotype Asia-1). CONCLUSION: The FMDV serotype O PanAsia-02 sub-lineage was confirmed in Bangladesh under the ME-SA topotype for the first time. The extensive cross-border animal movement from neighboring countries may act as the source of diversified FMDV serotypes in Bangladesh.

4.
Arch Microbiol ; 192(5): 395-408, 2010 May.
Article in English | MEDLINE | ID: mdl-20358180

ABSTRACT

We explored the molecular diversity of cytochrome P450 genes in the filamentous fungus Aspergillus oryzae using bioinformatic and experimental approaches. Based on bioinformatic annotation, we found 155 putative genes of cytochromes P450 in the whole genome sequence; however, 13 of 155 appeared to be pseudogenes due to sequence deletions and/or inframe stop codon(s). There are 87 families of A. oryzae cytochromes P450 (AoCYPs), indicating considerable phylogenetic diversity. To characterize A. oryzae AoCYPs, we attempted to isolate cDNAs using RT-PCR and determined their transcriptional capabilities. To date, we have confirmed gene expression of 133 AoCYPs and cloned 121 AoCYPs as full-length cDNAs encoding a mature open reading frame. Using experimentally deduced sequences and intron-exon organization, we analyzed AoCYPs phylogenetically. We also identified intronic consensus sequences in AoCYPs genes. The experimentally validated exonic and intronic sequences will be a powerful advantage in identification and characterization of novel P450s from various ascomycetous fungi.


Subject(s)
Aspergillus oryzae/genetics , Cytochrome P-450 Enzyme System/genetics , Genes, Fungal , Polymorphism, Genetic , Computational Biology , DNA, Fungal/chemistry , DNA, Fungal/genetics , Gene Expression Profiling , Molecular Sequence Data , Phylogeny , Pseudogenes , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...