Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Photochem Photobiol B ; 256: 112939, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761748

ABSTRACT

The visible light spectrum (400-700 nm) powers plant photosynthesis and innumerable other biological processes. Photosynthesis curves plotted by pioneering photobiologists show that amber light (590-620 nm) induces the highest photosynthetic rates in this spectrum. Yet, both red and blue light are viewed superior in their influence over plant growth. Here we report two approaches for quantifying how light wavelength photosynthesis and plant growth using light emitting diodes (LEDs). Resolved quantum yield spectra of tomato and lettuce plants resemble those acquired earlier, showing high quantum utilization efficiencies in the 420-430 nm and 590-620 nm regions. Tomato plants grown under blue (445 nm), amber (595 nm), red (635 nm), and combined red-blue-amber light for 14 days show that amber light yields higher fresh and dry mass, by at least 20%. Principle component analysis shows that amber light has a more pronounced and direct effect on fresh mass, whereas red light has a major effect on dry mass. These data clarify amber light's primary role in photosynthesis and suggest that bandwidth determines plant growth and productivity under sole amber lighting. Findings set precedence for future work aimed at maximizing plant productivity, with widespread implications for controlled environment agriculture.


Subject(s)
Light , Photosynthesis , Solanum lycopersicum , Photosynthesis/radiation effects , Solanum lycopersicum/growth & development , Solanum lycopersicum/radiation effects , Solanum lycopersicum/metabolism , Lactuca/growth & development , Lactuca/radiation effects , Lactuca/metabolism
2.
Foods ; 10(6)2021 Jun 09.
Article in English | MEDLINE | ID: mdl-34207589

ABSTRACT

This study aimed to examine the total viable bacteria (TVBC); total coliform (TCC); fecal coliform (TFC); pathogenic Pseudomonas spp., Staphylococcus aureus, and total fungi (TF); and the effect of different low-cost disinfectants (sterile water, salt water, blanched, and vinegar) in decontamination of 12 types of fruit and 10 types of vegetables. In fruit samples, the lowest TVBC was enumerated at 3.18 ± 0.27 log CFU/g in Indian gooseberry and the highest at 6.47 ± 0.68 log CFU/g in guava. Staphylococci (2.04 ± 0.53-5.10 ± 0.02 log CFU/g), Pseudomonas (1.88 ± 0.03-5.38 ± 0.08 log CFU/g), and total fungi (2.60 ± 0.18-7.50 ± 0.15 log CFU/g) were found in all fruit samples; however, no Salmonella was detected in fruit samples. Similarly, the lowest TVBC recorded 5.67± 0.49 log CFU/g in cucumber and the highest 7.37 ± 0.06 log CFU/g in yard long bean. The Staphylococci (3.48 ± 0.13-4.81 ± 0.16 log CFU/g), Pseudomonas (3.57± 0.21- 4.75 ± 0.23 log CFU/g), TCC (1.85 ± 1.11-56.50 ± 37.14 MPN/g), TFC (1.76 ± 0.87- 3.78 ± 3.76 MPN/g), and TF (3.79 ± 0.18-4.40 ± 0.38 log CFU/g) were recorded in all vegetables samples, but no Salmonella was detected in yard long bean, pointed gourd, carrot, tomato, cucumber, or brinjal. However, vinegar showed the highest microbial load reduction of selected fruit and vegetables among the different treatments. With vinegar treatment, the highest reduction of TVBC (1.61-log) and TF (2.54-log) was observed for fruits, and TVBC (2.31-log) and TF (2.41-log) for vegetables. All the disinfectant treatments resulted in significant (p < 0.01) bacterial load reduction compared to control for the studied fruits and vegetable samples.

3.
Plants (Basel) ; 10(6)2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34203939

ABSTRACT

This study aimed to evaluate the effect of organic substrates on the growth yield, photosynthetic response, and nutritional profile of red leaf lettuce grown in different compositions of cocopeat (CP), sawdust (SD), and rice husk (RH). The result showed that the properties of substrates were influenced variably by their mixing ratios. The highest water holding capacity and moisture content were found in CP, and it provided the preferable pH, electrical conductivity, bulk density, and air-filled porosity in association with other categories of the substrate. Cocopeat-based media provides ample microclimate conditions in the root region of plants and increased their height, number of leaves, and fresh biomass components. The utmost dry biomass of plant parts also remarkably increased in CP; L*, a*, and b* chromaticity of leaves remained unchanged. The maximum chlorophyll content was attained in CP substrate, except for chlorophyll a/b, which was higher in RH. The net photosynthetic rate (PN), transpiration rate (E), and nitrate in leaves were enhanced substantially in CP, while it was lower in SD. Biochemical compositions and nutrients in leaves were likewise stimulated under the culture of cocopeat-based media. Results indicate that cocopeat, sawdust, and rice husk are a possible substrates mixture in a volume ratio of 3:1:1, which would be a better choice in the cultivation of red leaf lettuce.

4.
Foods ; 8(7)2019 Jun 27.
Article in English | MEDLINE | ID: mdl-31252701

ABSTRACT

Broomcorn millet (Panicum miliaceum L.) is an important nutritious ancient minor-cereal food crop. However, this crop is little explored in the food processing arena to improve its functionality. In this context, different processing methods were applied to enhance the secondary compounds of broomcorn millet. Four different individual methods such as roasting, steaming, puffing, and extrusion were applied at 110 °C to enhance the functional attributes of millet flour. It was observed that the significantly highest content of total phenolic (TP) (670 mg/100 g of ferulic acid equivalent) and total flavonoid (TF) (391 mg/100 g of rutin equivalent ) was attained in the roasted whole millet followed by steaming (315 mg/100 g, 282 mg/100 g), puffing (645 mg/100 g, 304 mg/100 g), extrusion (455 mg/100 g, 219 mg/100 g), and control (295 mg/100 g, 183 mg/100 g). The chromatographic analysis showed a greater content of single phenolic acids such as syringic acid, gallic acid, 4-hydroxy benzoic acid, ferulic acid, sinapic acid, and catechin in roasted millet compared to control, and the content of each acid was higher in whole millet than dehulled. Results also indicated that the content of ferulic acid was relatively higher among the quantified single phenolic acid from broomcorn millet. Likewise, in comparison with dehulled millet, the roasted whole millet showed higher total antioxidant capacity, measured by the 2,2-diphenyl-1 picryl hydrazyl (DPPH), the ferric reducing antioxidant power assay (FRAP), the phosphomolybdenum method (PPMD), and the hydroxyl radical scavenging capacity (HRSC) method. Lastly, it is concluded that the roasting method should be taken into consideration in the processing of broomcorn millet to enhance the content of nutraceutical compounds and improve its functionality.

5.
Plants (Basel) ; 8(4)2019 Apr 08.
Article in English | MEDLINE | ID: mdl-30965584

ABSTRACT

The aim of this study was to investigate the different combinations of red (R) and blue (B) light emitting diode (LEDs') lighting effects on growth, pigment content, and antioxidant capacity in lettuce, spinach, kale, basil, and pepper in a growth chamber. The growth chamber was equipped with R and B light percentages based on total light intensity: 83% R + 17% B; 91% R + 9% B; 95% R + 5% B; and control was 100% R. The photosynthetic photon flux density (PPFD), photoperiod, temperature, and relative humidity of the growth chamber were maintained at 200 ± 5 µmol m-2 s-1, 16 h, 25/21 ± 2.5 °C, and 65 ± 5%, respectively. It is observed that the plant height of lettuce, kale, and pepper was significantly increased under 100% R light, whereas the plant height of spinach and basil did not show any significant difference. The total leaf number of basil and pepper was significantly increased under the treatment of 95% R + 5% B light, while no significant difference was observed for other plant species in the same treatment. Overall, the fresh and dry mass of the studied plants was increased under 91% R + 9% B and 95% R + 5% B light treatment. The significantly higher flower and fruit numbers of pepper were observed under the 95% R + 5% B treatment. The chlorophyll a, chlorophyll b, and total chlorophyll content of lettuce, spinach, basil, and pepper was significantly increased under the 91% R + 9% B treatment while the chlorophyll content of kale was increased under the 95% R + 5% B light treatment. The total carotenoid content of lettuce and spinach was higher in the 91% R + 9% B treatment whereas the carotenoid content of kale, basil, and pepper was increased under the 83% R + 17% B treatment. The antioxidant capacity of the lettuce, spinach, and kale was increased under the 83% R + 17% B treatment while basil and pepper were increased under the 91% R + 9% B treatment. This result indicates that the addition of B light is essential with R light to enhance growth, pigment content, and antioxidant capacity of the vegetable plant in a controlled environment. Moreover, the percentage of B with R light is plant species dependent.

SELECTION OF CITATIONS
SEARCH DETAIL
...