Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Resour Announc ; 13(4): e0108423, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38501781

ABSTRACT

Acinetobacter baumannii strain Ab10 retrieved in Malaysia in 2017 represents a pathogen carrying multiple antibiotic-resistant genes (blaOXA-23, ant(3")-Ila, blaADC-32, and blaOXA-699). We introduce the 3.89 Mbp genome sequence from short-read sequencing (Illumina's NovaSeq6000).

2.
Micromachines (Basel) ; 14(4)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37421113

ABSTRACT

This paper presents a finger-actuated micropump with a consistent flow rate and no backflow. The fluid dynamics in interstitial fluid (ISF) extraction microfluidics are studied through analytical, simulation, and experimental methods. Head losses, pressure drop, diodocity, hydrogel swelling, criteria for hydrogel absorption, and consistency flow rate are examined in order to access microfluidic performance. In terms of consistency, the experimental result revealed that after 20 s of duty cycles with full deformation on the flexible diaphragm, the output pressure became uniform and the flow rate remained at nearly constant levels of 2.2 µL/min. The flow rate discrepancy between the experimental and predicted flow rates is around 22%. In terms of diodicity, when the serpentine microchannel and hydrogel-assisted reservoir are added to the microfluidic system integration, the diodicity increases by 2% (Di = 1.48) and 34% (Di = 1.96), respectively, compared to when the Tesla integration (Di = 1.45) is used alone. A visual and experimentally weighted analysis finds no signs of backflow. These significant flow characteristics demonstrate their potential usage in many low-cost and portable microfluidic applications.

3.
Biomed Mater Eng ; 33(1): 13-30, 2022.
Article in English | MEDLINE | ID: mdl-34366314

ABSTRACT

BACKGROUND: The blood flow in the human artery has been a subject of sincere interest due to its prime importance linked with human health. The hemodynamic study has revealed an essential aspect of blood flow that eventually proved to be paramount to make a correct decision to treat patients suffering from cardiac disease. OBJECTIVE: The current study aims to elucidate the two-way fluid-structure interaction (FSI) analysis of the blood flow and the effect of stenosis on hemodynamic parameters. METHODS: A patient-specific 3D model of the left coronary artery was constructed based on computed tomography (CT) images. The blood is assumed to be incompressible, homogenous, and behaves as Non-Newtonian, while the artery is considered as a nonlinear elastic, anisotropic, and incompressible material. Pulsatile flow conditions were applied at the boundary. Two-way coupled FSI modeling approach was used between fluid and solid domain. The hemodynamic parameters such as the pressure, velocity streamline, and wall shear stress were analyzed in the fluid domain and the solid domain deformation. RESULTS: The simulated results reveal that pressure drop exists in the vicinity of stenosis and a recirculation region after the stenosis. It was noted that stenosis leads to high wall stress. The results also demonstrate an overestimation of wall shear stress and velocity in the rigid wall CFD model compared to the FSI model.


Subject(s)
Coronary Vessels , Models, Cardiovascular , Blood Flow Velocity , Computer Simulation , Coronary Vessels/diagnostic imaging , Heart , Hemodynamics , Humans , Pulsatile Flow , Stress, Mechanical
4.
Carbohydr Polym ; 173: 91-99, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28732923

ABSTRACT

Recently, surface functionality and thermal property of the green nanomaterials have received wide attention in numerous applications. In this study, microcrystalline cellulose (MCC) was used to prepare the nanocrystalline celluloses (NCCs) using acid hydrolysis method. The NCCs was treated with TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxy radical]-oxidation to prepare TEMPO-oxidized NCCs. Cellulose nanofibrils (CNFs) also prepared from MCC using TEMPO-oxidation. The effects of rapid cooling and chemical treatments on the thermo-structural property studies of the prepared nanocelluloses were investigated through FTIR, thermogravimetric analysis-derivative thermogravimetric (TGA-DTG), and XRD. A posteriori knowledge of the FTIR and TGA-DTG analysis revealed that the rapid cooling treatment enhanced the hydrogen bond energy and thermal stability of the TEMPO-oxidized NCC compared to other nanocelluloses. XRD analysis exhibits the effect of rapid cooling on pseudo 2I helical conformation. This was the first investigation performed on the effect of rapid cooling on structural properties of the nanocellulose.

SELECTION OF CITATIONS
SEARCH DETAIL
...