Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Chem ; 16(6): 970-978, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38528102

ABSTRACT

In vivo fluorescence imaging in the shortwave infrared (SWIR, 1,000-1,700 nm) and extended SWIR (ESWIR, 1,700-2,700 nm) regions has tremendous potential for diagnostic imaging. Although image contrast has been shown to improve as longer wavelengths are accessed, the design and synthesis of organic fluorophores that emit in these regions is challenging. Here we synthesize a series of silicon-RosIndolizine (SiRos) fluorophores that exhibit peak emission wavelengths from 1,300-1,700 nm and emission onsets of 1,800-2,200 nm. We characterize the fluorophores photophysically (both steady-state and time-resolved), electrochemically and computationally using time-dependent density functional theory. Using two of the fluorophores (SiRos1300 and SiRos1550), we formulate nanoemulsions and use them for general systemic circulatory SWIR fluorescence imaging of the cardiovascular system in mice. These studies resulted in high-resolution SWIR images with well-defined vasculature visible throughout the entire circulatory system. This SiRos scaffold establishes design principles for generating long-wavelength emitting SWIR and ESWIR fluorophores.


Subject(s)
Fluorescent Dyes , Infrared Rays , Optical Imaging , Silicon , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Silicon/chemistry , Animals , Mice , Indolizines/chemistry , Indolizines/chemical synthesis , Density Functional Theory
2.
J Org Chem ; 87(17): 11319-11328, 2022 09 02.
Article in English | MEDLINE | ID: mdl-35984405

ABSTRACT

The design of shortwave infrared (SWIR) emissive small molecules with good stability in water remains an important challenge for fluorescence biological imaging applications. A series of four SWIR emissive rhodindolizine (RI) dyes were rationally designed and synthesized to probe the effects of nonconjugated substituents, conjugated donor groups, and nanoencapsulation in a water-soluble polymer on the stability and optical properties of the dyes. Steric protecting groups were added at the site of a significant LUMO presence to probe the effects on stability. Indolizine donor groups with added dimethylaniline groups were added to reduce the electrophilicity of the dyes toward nucleophiles such as water. All of the dyes were found to absorb (920-1096 nm peak values) and emit (1082-1256 nm peak values) within the SWIR region. Among xanthene-based emissive dyes, emission values >1200 nm are exceptional with 1256 nm peak emission being a longer emission than the recent record setting VIX-4 xanthene-based dye. Half-lives were improved from ∼5 to >24 h through the incorporation of either steric-based core protection groups or donors with increased donation strength. Importantly, the nanoencapsulation of the dyes in a water-soluble surfactant (Triton-X) allows for the use of these dyes in biological imaging applications.


Subject(s)
Fluorescent Dyes , Optical Imaging , Optical Imaging/methods , Polymers , Water , Xanthenes
3.
J Org Chem ; 86(21): 15376-15386, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34647452

ABSTRACT

Shortwave infrared (SWIR)-emitting small molecules are desirable for biological imaging applications. In this study, four novel pentamethine indolizine cyanine dyes were synthesized with N,N-dimethylaniline-based substituents on the indolizine periphery at varied substitution sites. The dyes are studied via computational chemistry and optical spectroscopy both in solution and when encapsulated. Dramatic spectral shifts in the absorption and emission spectrum wavelengths with added donor groups are observed. Significant absorption and emission with an emissive quantum yield as high as 3.6% in the SWIR region is possible through the addition of multiple donor groups per indolizine.


Subject(s)
Indolizines , Quinolines , Fluorescent Dyes , Infrared Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...