Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Nutr ; 154(6): 1815-1826, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599385

ABSTRACT

BACKGROUND: Evidence of the effectiveness of biofortified maize with higher provitamin A (PVA) to address vitamin A deficiency in rural Africa remains scant. OBJECTIVES: This study projects the impact of adopting PVA maize for a diversity of households in an area typical of rural Zimbabwe and models the cost and composition of diets adequate in vitamin A. METHODS: Household-level weighed food records were generated from 30 rural households during a week in April and November 2021. Weekly household intakes were calculated, as well as indicative costs of diets using data from market surveys. The impact of PVA maize adoption was modeled assuming all maize products contained observed vitamin A concentrations. The composition and cost of the least expensive indicative diets adequate in vitamin A were calculated using linear programming. RESULTS: Very few households would reach adequate intake of vitamin A with the consumption of PVA maize. However, from a current situation of 33%, 50%-70% of households were projected to reach ≥50% of their requirements (the target of PVA), even with the modest vitamin A concentrations achieved on-farm (mean of 28.3 µg RAE per 100 g). This proportion would increase if higher concentrations recorded on-station were achieved. The estimated daily costs of current diets (mean ± standard deviation) were USD 1.43 ± 0.59 in the wet season and USD 0.96 ± 0.40 in the dry season. By comparison, optimization models suggest that diets adequate in vitamin A could be achieved at daily costs of USD 0.97 and USD 0.79 in the wet and dry seasons, respectively. CONCLUSIONS: The adoption of PVA maize would bring a substantial improvement in vitamin A intake in rural Zimbabwe but should be combined with other interventions (e.g., diet diversification) to fully address vitamin A deficiency.


Subject(s)
Biofortification , Diet , Rural Population , Vitamin A , Zea mays , Zea mays/chemistry , Zimbabwe , Vitamin A/administration & dosage , Humans , Vitamin A Deficiency/prevention & control , Vitamin A Deficiency/diet therapy , Provitamins , Food, Fortified , Nutritional Status , Female , Male
2.
Front Plant Sci ; 14: 1070302, 2023.
Article in English | MEDLINE | ID: mdl-36760637

ABSTRACT

While significant progress has been made by several international breeding institutions in improving maize nutritional quality, stacking of nutritional traits like zinc (Zn), quality protein, and provitamin A has not received much attention. In this study, 11 newly introduced Zn-enhanced inbred lines were inter-mated with seven testers from normal, provitamin A and quality protein maize (QPM) nutritional backgrounds in order to estimate the general combining ability (GCA) and specific combining ability (SCA) for grain yield (GY) and secondary traits under stress conditions [(combined heat and drought stress (HMDS) and managed low nitrogen (LN)] and non-stress conditions [(summer rainfed; OPT) and well-watered (irrigated winter; WW)] in Zimbabwe. Lines L6 and L7 had positive GCA effects for GY and secondary traits under OPT and LN conditions, and L8 and L9 were good general combiners for GY under HMDS conditions. Superior hybrids with high GY and desirable secondary traits were identified as L10/T7 and L9/T7 (Zn x normal), L2/T4, L4/T4, L3/T5 (Zn x provitamin A), and L8/T6 and L11/T3 (Zn x QPM), suggesting the possibility of developing Zn-enhanced hybrids with high yield potential using different nutritional backgrounds. Both additive and dominance gene effects were important in controlling most of the measured traits. This suggests that selecting for desirable traits during inbred line development followed by hybridization and testing of specific crosses under different management conditions could optimize the breeding strategy for stacked nutritionally-enhanced maize genotypes.

3.
Plants (Basel) ; 12(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36678983

ABSTRACT

The negative impacts of zinc (Zn) and iron (Fe) deficiency due to over-reliance on monotonous cereal-based diets are well-documented. Increasing micronutrient densities in maize is currently among top breeders' priorities. Here, 77 single-cross Zn-enhanced hybrids with normal, provitamin A and quality protein maize genetic backgrounds were evaluated together with seven checks for grain Zn and Fe concentration and agronomic traits under optimum, low nitrogen (N) and managed drought conditions. Results showed a fairly wide variability for grain Zn (10.7-57.8 mg kg-1) and Fe (7.1-58.4 mg kg-1) concentration amongst the hybrids, across management conditions. Notable differences in Zn concentration were observed between the Zn-enhanced quality protein maize (QPM) (31.5 mg kg-1), Zn-enhanced provitamin A maize (28.5 mg kg-1), Zn-enhanced normal maize (26.0 mg kg-1) and checks (22.9 mg kg-1). Although checks showed the lowest micronutrient concentration, they were superior in grain yield (GY) performance, followed by Zn-enhanced normal hybrids. Genotypes grown optimally had higher micronutrient concentrations than those grown under stress. Genotype × environment interaction (G × E) was significant (p ≤ 0.01) for GY, grain Zn and Fe concentration, hence micronutrient-rich varieties could be developed for specific environments. Furthermore, correlation between grain Zn and Fe was positive and highly significant (r = 0.97; p ≤ 0.01) suggesting the possibility of improving these traits simultaneously. However, the negative correlation between GY and grain Zn (r = -0.44; p ≤ 0.01) and between GY and grain Fe concentration (r = -0.43; p ≤ 0.01) was significant but of moderate magnitude, suggesting slight dilution effects. Therefore, development of high yielding and micronutrient-dense maize cultivars is possible, which could reduce the highly prevalent micronutrient deficiency in sub-Saharan Africa (SSA).

4.
BMJ Open ; 12(12): e056435, 2022 12 30.
Article in English | MEDLINE | ID: mdl-36585147

ABSTRACT

INTRODUCTION: Over one-quarter of children in sub-Saharan Africa are stunted; however, commercial supplements only partially meet child nutrient requirements, cannot be sustainably produced, and do not resolve physiological barriers to adequate nutrition (eg, inflammation, microbiome dysbiosis and metabolic dysfunction). Redesigning current infant and young child feeding (IYCF) interventions using locally available foods to improve intake, uptake and utilisation of nutrients could ameliorate underlying pathogenic pathways and improve infant growth during the critical period of complementary feeding, to reduce the global burden of stunting. METHODS AND ANALYSIS: Child Health Agriculture Integrated Nutrition is an open-label, individual household randomised trial comparing the effects of IYCF versus 'IYCF-plus' on nutrient intake during infancy. The IYCF intervention comprises behaviour change modules to promote infant nutrition delivered by community health workers, plus small-quantity lipid-based nutrient supplements from 6 to 12 months of age which previously reduced stunting at 18 months of age by ~20% in rural Zimbabwe. The 'IYCF-plus' intervention provides these components plus powdered NUA-45 biofortified sugar beans, whole egg powder, moringa leaf powder and provitamin A maize. The trial will enrol 192 infants between 5 and 6 months of age in Shurugwi district, Zimbabwe. Research nurses will collect data plus blood, urine and stool samples at baseline (5-6 months of age) and endline (9-11 months of age). The primary outcome is energy intake, measured by multipass 24-hour dietary recall at 9-11 months of age. Secondary outcomes include nutrient intake, anthropometry and haemoglobin concentration. Nested laboratory substudies will evaluate the gut microbiome, environmental enteric dysfunction, metabolic phenotypes and innate immune function. Qualitative substudies will explore the acceptability and feasibility of the IYCF-plus intervention among participants and community stakeholders, and the effects of migration on food production and consumption. ETHICS AND DISSEMINATION: This trial is registered at ClinicalTrials.gov (NCT04874688) and was approved by the Medical Research Council of Zimbabwe (MRCZ/A/2679) with the final version 1.4 approved on 20 August 2021, following additional amendments. Dissemination of trial results will be conducted through the Community Engagement Advisory Board in the study district and through national-level platforms. TRIAL REGISTRATION NUMBER: NCT04874688.


Subject(s)
Child Health , Infant Nutritional Physiological Phenomena , Child , Humans , Infant , Zimbabwe , Powders , Infant Nutritional Physiological Phenomena/physiology , Dietary Supplements , Growth Disorders/prevention & control , Agriculture/methods , Randomized Controlled Trials as Topic
5.
Sci Rep ; 12(1): 20110, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36418412

ABSTRACT

Fostering a culture of continuous improvement through regular monitoring of genetic trends in breeding pipelines is essential to improve efficiency and increase accountability. This is the first global study to estimate genetic trends across the International Maize and Wheat Improvement Center (CIMMYT) tropical maize breeding pipelines in eastern and southern Africa (ESA), South Asia, and Latin America over the past decade. Data from a total of 4152 advanced breeding trials and 34,813 entries, conducted at 1331 locations in 28 countries globally, were used for this study. Genetic trends for grain yield reached up to 138 kg ha-1 yr-1 in ESA, 118 kg ha-1 yr-1 South Asia and 143 kg ha-1 yr-1 in Latin America. Genetic trend was, in part, related to the extent of deployment of new breeding tools in each pipeline, strength of an extensive phenotyping network, and funding stability. Over the past decade, CIMMYT's breeding pipelines have significantly evolved, incorporating new tools/technologies to increase selection accuracy and intensity, while reducing cycle time. The first pipeline, Eastern Africa Product Profile 1a (EA-PP1a), to implement marker-assisted forward-breeding for resistance to key diseases, coupled with rapid-cycle genomic selection for drought, recorded a genetic trend of 2.46% per year highlighting the potential for deploying new tools/technologies to increase genetic gain.


Subject(s)
Plant Breeding , Zea mays , Zea mays/genetics , Triticum , Droughts , Edible Grain/genetics
6.
Nutrients ; 13(3)2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33807073

ABSTRACT

Macro and micronutrient deficiencies pose serious health challenges globally, with the largest impact in developing regions such as subSaharan Africa (SSA), Latin America and South Asia. Maize is a good source of calories but contains low concentrations of essential nutrients. Major limiting nutrients in maize-based diets are essential amino acids such as lysine and tryptophan, and micronutrients such as vitamin A, zinc (Zn) and iron (Fe). Responding to these challenges, separate maize biofortification programs have been designed worldwide, resulting in several cultivars with high levels of provitamin A, lysine, tryptophan, Zn and Fe being commercialized. This strategy of developing single-nutrient biofortified cultivars does not address the nutrient deficiency challenges in SSA in an integrated manner. Hence, development of maize with multinutritional attributes can be a sustainable and cost-effective strategy for addressing the problem of nutrient deficiencies in SSA. This review provides a synopsis of the health challenges associated with Zn, provitamin A and tryptophan deficiencies and link these to vulnerable societies; a synthesis of past and present intervention measures for addressing nutrient deficiencies in SSA; and a discussion on the possibility of developing maize with multinutritional quality attributes, but also with adaptation to stress conditions in SSA.


Subject(s)
Biofortification/methods , Zea mays/chemistry , Africa , Amino Acids , Diet , Food, Fortified , Gene Editing , Humans , Iron/metabolism , Malnutrition/epidemiology , Micronutrients , Nutritive Value , Plant Proteins , Plants, Genetically Modified , Provitamins , Risk Factors , Vitamin A , Vitamin A Deficiency , Zea mays/genetics , Zinc/metabolism
7.
Crop Sci ; 60(2): 991-1003, 2020.
Article in English | MEDLINE | ID: mdl-32612293

ABSTRACT

Soil acidity has received less attention than other biophysical stresses such as drought and low N, despite accounting for a considerable reduction in maize (Zea mays L.) productivity in many parts of southern Africa. The line × tester mating design was used to determine the general combining ability (GCA) for grain yield of 14 maize inbred lines and the specific combining ability (SCA) of their corresponding crosses. Thirty-three single-cross hybrids were evaluated under acid and optimum soils across 11 environments over three seasons. Across environments, mean grain yield reduction ranged from 11 to 37% due to low pH. Additive gene action was more important than nonadditive gene action for grain yield under both soil conditions. Tester GCA effects were larger for grain yield than GCA effects of lines and SCA effects of crosses for both soil conditions. Tester GCA effects were less sensitive to environmental fluctuations than line GCA effects and SCA effects of crosses. Cross combinations with desirable SCA effects for grain yield were associated with high per se grain yield, which suggests that SCA was a good predictor of grain yield in this study. These crosses consisted of good × good and good × poor general combiners, which indicates that GCA was a good predictor of grain yield. Therefore, priority should be given for yield selection in progenies and hybridization of specific crosses with desirable SCA when breeding acid-soil-tolerant maize.

8.
Front Genet ; 10: 1392, 2019.
Article in English | MEDLINE | ID: mdl-32153628

ABSTRACT

Maize is a major source of food security and economic development in sub-Saharan Africa (SSA), Latin America, and the Caribbean, and is among the top three cereal crops in Asia. Yet, maize is deficient in certain essential amino acids, vitamins, and minerals. Biofortified maize cultivars enriched with essential minerals and vitamins could be particularly impactful in rural areas with limited access to diversified diet, dietary supplements, and fortified foods. Significant progress has been made in developing, testing, and deploying maize cultivars biofortified with quality protein maize (QPM), provitamin A, and kernel zinc. In this review, we outline the status and prospects of developing nutritionally enriched maize by successfully harnessing conventional and molecular marker-assisted breeding, highlighting the need for intensification of efforts to create greater impacts on malnutrition in maize-consuming populations, especially in the low- and middle-income countries. Molecular marker-assisted selection methods are particularly useful for improving nutritional traits since conventional breeding methods are relatively constrained by the cost and throughput of nutritional trait phenotyping.

SELECTION OF CITATIONS
SEARCH DETAIL
...