Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
NPJ Precis Oncol ; 8(1): 6, 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38184733

ABSTRACT

Polo-like kinase 1 (PLK1), a serine/threonine kinase, is overexpressed in melanoma and its expression has been associated with poor disease prognosis. PLK1 has been shown to interact with NUMB, a NOTCH antagonist. However, the exact role of PLK1, NUMB, and NOTCH signaling in epithelial-mesenchymal transition (EMT) in melanoma progression is unclear. In this study, Affymetrix microarray analysis was performed to determine differentially expressed genes following shRNA-mediated knockdown of PLK1 in human melanoma cells that showed significant modulations in EMT and metastasis-related genes. Using multiple PLK1-modulated melanoma cell lines, we found that PLK1 is involved in the regulation of cell migration, invasion, and EMT via its kinase activity and NOTCH activation. In vitro kinase assay and mass spectrometry analysis demonstrated a previously unknown PLK1 phosphorylation site (Ser413) on NUMB. Overexpression of non-phosphorylatable (S413A) and phosphomimetic (S413D) mutants of NUMB in melanoma cells implicated the involvement of NUMB-S413 phosphorylation in cell migration and invasion, which was independent of NOTCH activation. To determine the clinical relevance of these findings, immunohistochemistry was performed using melanoma tissue microarray, which indicated a strong positive correlation between PLK1 and N-cadherin, a protein required for successful EMT. These findings were supported by TCGA analysis, where expression of high PLK1 with low NUMB or high NOTCH or N-cadherin showed a significant decrease in survival of melanoma patients. Overall, these results suggest a potential role of PLK1 in EMT, migration, and invasion of melanoma cells. Our findings support the therapeutic targeting of PLK1, NUMB, and NOTCH for melanoma management.

3.
Transl Oncol ; 16: 101332, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34973570

ABSTRACT

Polo-like kinase I (PLK1), a cell cycle regulating kinase, has been shown to have oncogenic function in several cancers. Although PLK1 inhibitors, such as BI2536, BI6727 (volasertib) and NMS-1286937 (onvansertib) are generally well-tolerated with a favorable pharmacokinetic profile, clinical successes are limited due to partial responses in cancer patients, especially those in advanced stages. Recently, combination therapies targeting multiple pathways are being tested for cancer management. In this review, we first discuss structure and function of PLK1, role of PLK1 in cancers, PLK1 specific inhibitors, and advantages of using combination therapy versus monotherapy followed by a critical account on PLK1-based combination therapies in cancer treatments, especially highlighting recent advancements and challenges. PLK1 inhibitors in combination with chemotherapy drugs and targeted small molecules have shown superior effects against cancer both in vitro and in vivo. PLK1-based combination therapies have shown increased apoptosis, disrupted cell cycle, and potential to overcome resistance in cancer cells/tissues over monotherapies. Further, with successes in preclinical experiments, researchers are validating such approaches in clinical trials. Although PLK1-based combination therapies have achieved initial success in clinical studies, there are examples where they have failed to improve patient survival. Therefore, further research is needed to identify and validate novel biologically informed co-targets for PLK1-based combinatorial therapies. Employing a network-based analysis, we identified potential PLK1 co-targets that could be examined further. In addition, understanding the mechanisms of synergism between PLK1 inhibitors and other agents may lead to a better approach on which agents to pair with PLK1 inhibition for optimum cancer treatment.

4.
J Invest Dermatol ; 142(4): 1145-1157.e7, 2022 04.
Article in English | MEDLINE | ID: mdl-34597611

ABSTRACT

Novel therapeutic strategies are required for the effective and lasting treatment of metastatic melanoma, one of the deadliest skin malignancies. In this study, we determined the antimelanoma efficacy of 4'-bromo-resveratrol (4'-BR), which is a small-molecule dual inhibitor of SIRT1 and SIRT3, in a BrafV600E/PtenNULL mouse model that recapitulates human disease, including metastases. Tumors were induced by topical application of 4-hydroxy-tamoxifen on shaved backs of mice aged 10 weeks, and the effects of 4'-BR (5‒30 mg/kg of body weight, intraperitoneally, 3 days per week for 5 weeks) were assessed on melanoma development and progression. We found that 4'-BR at a dose of 30 mg/kg significantly reduced the size and volume of primary melanoma tumors as well as lung metastasis with no adverse effects. Furthermore, mechanistic studies on tumors showed significant modulation in the markers of proliferation, survival, and melanoma progression. Because SIRT1 and SIRT3 are linked to immunomodulation, we performed differential gene expression analysis using a PanCancer Immune Profiling Panel (770 genes). Our data showed that 4'-BR significantly downregulated the genes related to metastasis promotion, chemokine/cytokine regulation, and innate/adaptive immune functions. Overall, inhibition of SIRT1 and SIRT3 by 4'-BR is a promising antimelanoma therapy with antimetastatic and immunomodulatory activities warranting further detailed studies, including clinical investigations.


Subject(s)
Melanoma , Sirtuin 3 , Animals , Cell Line, Tumor , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , Mice , Mice, Knockout , Proto-Oncogene Proteins B-raf/genetics , Sirtuin 1/genetics , Sirtuin 3/genetics
5.
Front Immunol ; 13: 1051472, 2022.
Article in English | MEDLINE | ID: mdl-36741360

ABSTRACT

Atopic dermatitis (AD) is a chronic inflammatory skin disease with significant health/economic burdens. Existing therapies are not fully effective, necessitating development of new approaches for AD management. Here, we report that dietary grape powder (GP) mitigates AD-like symptoms in 2,4-dinitrofluorobenzene (DNFB)-induced AD in NC/NgaTndCrlj mice. Using prevention and intervention protocols, we tested the efficacy of 3% and 5% GP-fortified diet in a 13-weeks study. We found that GP feeding markedly inhibited development and progression of AD-like skin lesions, and caused reduction in i) epidermal thickness, mast cell infiltration, ulceration, excoriation and acanthosis in dorsal skin, ii) spleen weight, extramedullary hematopoiesis and lymph nodes sizes, and iii) ear weight and IgE levels. We also found significant modulations in 15 AD-associated serum cytokines/chemokines. Next, using quantitative global proteomics, we identified 714 proteins. Of these, 68 (normal control) and 21 (5% GP-prevention) were significantly modulated (≥2-fold) vs AD control (DNFB-treated) group, with many GP-modulated proteins reverting to normal levels. Ingenuity pathway analysis of GP-modulated proteins followed by validation using ProteinSimple identified changes in acute phase response signaling (FGA, FGB, FGG, HP, HPX, LRG1). Overall, GP supplementation inhibited DNFB-induced AD in NC/NgaTndCrlj mice in both prevention and intervention trials, and should be explored further.


Subject(s)
Dermatitis, Atopic , Skin Diseases , Vitis , Mice , Animals , Dermatitis, Atopic/metabolism , Dinitrofluorobenzene , Diet
6.
Mol Cancer Ther ; 20(4): 632-640, 2021 04.
Article in English | MEDLINE | ID: mdl-33402398

ABSTRACT

The polo-like kinases (PLKs) are a family of serine/threonine kinases traditionally linked to cell-cycle regulation. A structurally unique member of this family, PLK4, has been shown to regulate centriole duplication during the cell cycle via interactions with a variety of centrosomal proteins. Recent findings suggest that PLK4 is overexpressed in various human cancers and associated with poor cancer prognosis. Although several studies have shown that PLK4 inhibition may lead to cancer cell death, the underlying mechanisms are largely unknown. In this review, we discuss the structure, localization, and function of PLK4, along with the functional significance of PLK4 in epithelial cancers and some preliminary work suggesting a role for PLK4 in the key cancer progression process epithelial-mesenchymal transition. We also discuss the potential of PLK4 as a druggable target for anticancer drug development based on critical analysis of the available data of PLK4 inhibitors in preclinical development and clinical trials. Overall, the emerging data suggest that PLK4 plays an essential role in epithelial cancers and should be further explored as a potential biomarker and/or therapeutic target. Continued detailed exploration of available and next-generation PLK4 inhibitors may provide a new dimension for novel cancer therapeutics following successful clinical trials.


Subject(s)
Neoplasms/genetics , Protein Serine-Threonine Kinases/metabolism , Humans , Neoplasms/pathology
7.
Mol Cancer Ther ; 20(1): 161-172, 2021 01.
Article in English | MEDLINE | ID: mdl-33177155

ABSTRACT

Melanoma is one of the most serious forms of skin cancer, and its increasing incidence coupled with nonlasting therapeutic options for metastatic disease highlights the need for additional novel approaches for its management. In this study, we determined the potential interactions between polo-like kinase 1 (PLK1, a serine/threonine kinase involved in mitotic regulation) and NOTCH1 (a type I transmembrane protein deciding cell fate during development) in melanoma. Employing an in-house human melanoma tissue microarray (TMA) containing multiple cases of melanomas and benign nevi, coupled with high-throughput, multispectral quantitative fluorescence imaging analysis, we found a positive correlation between PLK1 and NOTCH1 in melanoma. Furthermore, The Cancer Genome Atlas database analysis of patients with melanoma showed an association of higher mRNA levels of PLK1 and NOTCH1 with poor overall, as well as disease-free, survival. Next, utilizing small-molecule inhibitors of PLK1 and NOTCH (BI 6727 and MK-0752, respectively), we found a synergistic antiproliferative response of combined treatment in multiple human melanoma cells. To determine the molecular targets of the overall and synergistic responses of combined PLK1 and NOTCH inhibition, we conducted RNA-sequencing analysis employing a unique regression model with interaction terms. We identified the modulations of several key genes relevant to melanoma progression/metastasis, including MAPK, PI3K, and RAS, as well as some new genes such as Apobec3G, BTK, and FCER1G, which have not been well studied in melanoma. In conclusion, our study demonstrated a synergistic antiproliferative response of concomitant targeting of PLK1 and NOTCH in melanoma, unraveling a potential novel therapeutic approach for detailed preclinical/clinical evaluation.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Melanoma/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/metabolism , Receptors, Notch/antagonists & inhibitors , Receptors, Notch/metabolism , Signal Transduction , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Synergism , Gene Expression Regulation, Neoplastic/drug effects , Gene Ontology , Genetic Pleiotropy , Humans , Melanoma/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Small Molecule Libraries/pharmacology , Survival Analysis , Polo-Like Kinase 1
8.
Cancers (Basel) ; 12(8)2020 Aug 02.
Article in English | MEDLINE | ID: mdl-32748838

ABSTRACT

Prostate Cancer (PCa) is a leading cause of cancer-related morbidity and mortality in men. Therefore, novel mechanistically-driven approaches are needed for PCa management. Here, we determined the effects of grape antioxidants quercetin and/or resveratrol (60 and 600 mg/kg, respectively, in diet) against PCa in Transgenic Adenocarcinoma of Mouse Prostate (TRAMP)-model in prevention and intervention settings. We found resveratrol alone and in combination significantly inhibited prostate tumorigenesis in prevention setting, while the same was seen only in combination after intervention. The observed effects were associated with marked inhibition in proliferation, oxidative stress, and tumor survival markers, and induced apoptosis markers. Utilizing PCa PCR array analysis with prevention tumor tissues, we identified that quercetin-resveratrol modulates genes involved in promoter methylation, cell cycle, apoptosis, fatty acid metabolism, transcription factors, androgen response, PI3K/AKT and PTEN signaling. Ingenuity Pathway Analysis (IPA) identified IGF1 and BCL2 as central players in two gene networks. Functional annotation predicted increased apoptosis and inhibited cell viability/proliferation, hyperplasia, vasculogenesis, and angiogenesis with dual treatment. Furthermore, IPA predicted upstream inhibition of major PCa signaling VEGF, Ca2+, PI3K, CSF2, PTH). Based on PCR array, we identified decreased levels of EGFR, EGR3, and IL6, and increased levels of IGFBP7 and NKX3.1, overall supporting anti-PCa effects of quercetin-resveratrol.

9.
Cancers (Basel) ; 12(7)2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32630288

ABSTRACT

Non-melanoma skin cancers (NMSCs) are the most diagnosed cancers in the US and occur more frequently in males. We previously demonstrated chemoprotective effects of dietary grape powder (GP) against UVB-mediated skin tumorigenesis in female SKH-1 mice. To expand on this, here, we determined the effects of GP in a short-term UVB exposure protocol (0 or 5% GP, followed by UVB every other day for 2 weeks) in male and female SKH-1 mice, as well as explored any sex-related differences in UVB carcinogenesis via male SKH-1 mice (0, 3, or 5% GP; UVB twice weekly for 28 weeks). In the short-term study, we found that GP protects against early-stage epithelial hyperplasia and mast cell infiltration in both sexes. In the long term, GP markedly reduced tumor counts and malignant conversion, along with significant decreases in mast cell infiltration, serum IgE and Eotaxin. We also found inhibition of P38 phosphorylation and reduced PCNA, Ki67 and BCL2 levels, suggesting that the anti-inflammatory effects of GP inhibits P38, acting as an upstream regulator to inhibit proliferation and reduce tumor cell survival. Together, GP appears to protect against UVB-mediated skin damage and carcinogenesis in SKH-1 mice and should be explored further as a supplement for NMSC prevention.

10.
Photochem Photobiol ; 96(6): 1314-1320, 2020 11.
Article in English | MEDLINE | ID: mdl-32621766

ABSTRACT

Melanoma is one of the most aggressive, potentially fatal forms of skin cancer and has been shown to be associated with solar ultraviolet radiation-dependent initiation and progression. Despite remarkable recent advances with targeted and immune therapeutics, lasting and recurrence-free survival remain significant concerns. Therefore, additional novel mechanism-based approaches are needed for effective melanoma management. The sirtuin SIRT6 appears to have a pro-proliferative function in melanocytic cells. In this study, we determined the effects of genetic manipulation of SIRT6 in human melanoma cells, in vitro and in vivo. Our data demonstrated that CRISPR/Cas9-mediated knockout (KO) of SIRT6 in A375 melanoma cells resulted in a significant (1) decrease in growth, viability and clonogenic survival and (2) induction of G1-phase cell cycle arrest. Further, employing a RT2 Profiler PCR array containing 84 key transformation and tumorigenesis genes, we found that SIRT6 KO resulted in modulation of genes involved in angiogenesis, apoptosis, cellular senescence, epithelial-to-mesenchymal transition, hypoxia signaling and telomere maintenance. Finally, we found significantly decreased tumorigenicity of SIRT6 KO A375 cells in athymic nude mice. Our data provide strong evidence that SIRT6 promotes melanoma cell survival, both in vitro and in vivo, and could be exploited as a target for melanoma management.


Subject(s)
CRISPR-Cas Systems , Cell Proliferation/genetics , Melanoma/pathology , Sirtuins/genetics , Skin Neoplasms/pathology , Animals , Female , Gene Knockdown Techniques , Humans , In Vitro Techniques , Male , Melanoma/genetics , Mice , Mice, Nude , Skin Neoplasms/genetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
11.
J Proteome Res ; 18(10): 3741-3751, 2019 10 04.
Article in English | MEDLINE | ID: mdl-31487184

ABSTRACT

We recently showed that dietary grape powder (GP) imparts considerable protection against ultraviolet B (UVB)-mediated skin carcinogenesis in SKH-1 mice. To determine molecular mechanisms of this response, we employed tandem mass tag (TMT) quantitative global proteomics approach on skin tumors from mice exposed to 180 mJ/cm2 UVB twice per week and fed control or 5% GP diet. We found 2629 proteins modulated by GP feeding, with 34 identified using stringent cutoffs (false discovery rate (FDR) q-value ≤ 0.1, fold change ≥ 1.2, p-value ≤ 0.05, ≥ 3 unique peptides). Ingenuity Pathway Analysis helped identify seven proteins involved in protein ubiquitination, including the deubiquitinase UCHL5 and 6 subunits of the 20S proteasome (PSMA1,3,4,6 and PSMB4,7). A second data set without the FDR q-value identified 239 modulated proteins, seven of which are involved in protein ubiquitination. Further, 14 proteins involved in acute phase response signaling were modulated >1.5-fold, including acute phase proteins APCS, FGA, FGB, HP, HPX, and RBP1. Evaluation of upstream regulators found inhibition of ERK1/2 phosphorylation and NF-κB p65, and an increase in IκBα in GP-treated tumors. Overall, our data suggested that GP consumption may mitigate tumorigenesis by enhancing protein ubiquitination and degradation caused by oxidative stress, and manipulates an otherwise tumor-promoting anti-inflammatory environment.


Subject(s)
Drug Delivery Systems , Proteomics/methods , Skin Neoplasms/prevention & control , Vitis/chemistry , Animals , Chemoprevention/methods , Diet , Mice , Oxidative Stress , Proteolysis , Skin Neoplasms/etiology , Tandem Mass Spectrometry , Ubiquitination , Ultraviolet Rays/adverse effects
12.
J Invest Dermatol ; 139(3): 552-561, 2019 03.
Article in English | MEDLINE | ID: mdl-30393084

ABSTRACT

Skin cancer is the most frequently diagnosed cancer in the United States, and solar UVR is an established causative factor for approximately 90% of these cases. Despite efforts aimed at UV protection, including use of sunscreen and clothing, annual cases of skin cancer continue to rise. Here, we report that dietary grape powder mitigates UVB-mediated skin carcinogenesis in an SKH-1 hairless mouse model. Using a UVB initiation-promotion protocol, whereby mice were exposed to 180 mJ/cm2 UVB two times per week for 28 weeks, we determined the effects of a grape powder-fortified diet (3% or 5%) on skin carcinogenesis. Grape powder consumption at both doses resulted in marked inhibition in tumor incidence, as well as a delay in onset of tumorigenesis. Molecular analyses of skin and tumor tissue showed that grape powder-mediated protective response against UVB-induced skin cancer was accompanied by enhanced DNA damage repair, reduced proliferation, increased apoptosis, and modulations in several oxidative stress markers specifically related to inhibition of oxidative stress and increased reactive oxygen species metabolism. NRF2, an activator of cellular antioxidant response, was decreased by grape powder feeding, suggesting a supportive role in tumor cell survival. Overall, our study suggested that dietary grape, containing several antioxidants in natural amalgamation, may protect against UVB-mediated skin carcinogenesis.


Subject(s)
Carcinogenesis/pathology , Chemoprevention/methods , Dietary Supplements , Skin Neoplasms/prevention & control , Ultraviolet Rays/adverse effects , Animals , Antioxidants/pharmacology , Biopsy, Needle , Disease Models, Animal , Female , Immunohistochemistry , Mice , Mice, Hairless , Random Allocation , Reference Values , Skin Neoplasms/etiology , Skin Neoplasms/pathology , Vitis
13.
J Proteomics ; 170: 99-109, 2018 01 06.
Article in English | MEDLINE | ID: mdl-28882678

ABSTRACT

Melanoma is the most notorious and fatal of all skin cancers and the existing treatment options have not been proven to effectively manage this neoplasm, especially the metastatic disease. Sirtuin (SIRT) proteins have been shown to be differentially expressed in melanoma. We have shown that SIRTs 1 and 2 were overexpressed in melanoma and inhibition of SIRT1 imparts anti-proliferative responses in human melanoma cells. To elucidate the impact of SIRT 1 and/or 2 in melanoma, we created stable knockdowns of SIRTs 1, 2, and their combination using shRNA mediated RNA interference in A375 human melanoma cells. We found that SIRT1 and SIRT1&2 combination knockdown caused a decreased cellular proliferation in melanoma cells. Further, the knockdown of SIRT 1 and/or 2 resulted in a decreased colony formation in melanoma cells. To explore the downstream targets of SIRTs 1 and/or 2, we employed a label-free quantitative nano-LC-MS/MS proteomics analysis using the stable lines. We found aberrant levels of proteins involved in many vital cellular processes, including cytoskeletal organization, ribosomal activity, oxidative stress response, and angiogenesis. These findings provide clear evidence of cellular systems undergoing alterations in response to sirtuin inhibition, and have unveiled several excellent candidates for future study. SIGNIFICANCE: Melanoma is the deadliest form of skin cancer, due to its aggressive nature, metastatic potential, and a lack of sufficient treatment options for advanced disease. Therefore, detailed investigations into the molecular mechanisms of melanoma growth and progression are needed. In the search for candidate genes to serve as therapeutic targets, the sirtuins show promise as they have been found to be upregulated in melanoma and they regulate a large number of proteins involved in cellular processes known to affect tumor growth, such as DNA damage repair, cell cycle arrest, and apoptosis. In this study, we used a large-scale label-free comparative proteomics system to identify novel protein targets that are affected following knockdown of SIRT1 and/or 2 in A375 metastatic melanoma cell line. Our study offers important insight into the potential downstream targets of SIRTs 1 and/or 2. This may unravel new potential areas of exploration in melanoma research.


Subject(s)
Gene Knockdown Techniques , Melanoma , Neoplasm Proteins , RNA Interference , Sirtuin 1/deficiency , Sirtuin 2/deficiency , Cell Line, Tumor , Humans , Melanoma/genetics , Melanoma/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Proteomics
14.
Cancer Lett ; 385: 179-187, 2017 01 28.
Article in English | MEDLINE | ID: mdl-27793694

ABSTRACT

The objective of this study was to determine the therapeutic potential of polo-like kinase 1 (Plk1) inhibition in melanoma, in vivo. Employing Vectra technology, we assessed the Plk1 expression profile in benign nevi, malignant (stages I-IV) and metastatic melanomas. We found a significant elevation of Plk1 immunostaining in melanoma tissues. Further, a second generation small molecule Plk1 inhibitor, BI 6727, resulted in reductions in growth, viability and clonogenic survival, as well as an increase in apoptosis of A375 and Hs 294T melanoma cells. BI 6727 treatment also resulted in a G2/M-as well as S-phase cell cycle arrest in melanoma cells. Importantly, BI 6727 (intravenous injection; 10 and 25 mg/kg body weight) treatment resulted in significant tumor growth delay and regression in vivo in A375-and Hs 294T-implanted xenografts in athymic nude mice. These anti-melanoma effects were accompanied with a decreased cellular proliferation (Ki-67 staining) and induction of apoptosis (caspase 3 activation). In addition, BI 6727 treatment caused a marked induction of p53 and p21 in vitro as well as in vivo. Overall, we suggest that Plk1 inhibition may be a useful approach as a monotherapy as well as in combination with other existing therapeutics, for melanoma management.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Cycle Proteins/antagonists & inhibitors , Cell Proliferation/drug effects , Melanoma/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Pteridines/pharmacology , Skin Neoplasms/drug therapy , Tumor Burden/drug effects , Animals , Apoptosis/drug effects , Caspase 3/metabolism , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Dose-Response Relationship, Drug , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , Ki-67 Antigen/metabolism , Melanoma/enzymology , Melanoma/secondary , Mice, Nude , Molecular Targeted Therapy , Mutation , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins B-raf/genetics , S Phase Cell Cycle Checkpoints/drug effects , Signal Transduction/drug effects , Skin Neoplasms/enzymology , Skin Neoplasms/pathology , Time Factors , Tumor Suppressor Protein p53/metabolism , Xenograft Model Antitumor Assays , Polo-Like Kinase 1
15.
Biochim Biophys Acta ; 1852(6): 1178-85, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25446990

ABSTRACT

Significant work has been done towards identifying the health-beneficial effects of the grape antioxidant resveratrol in a variety of bioassay- and disease- models, with much research being focused on its possible application to cancer management. Despite the large number of preclinical studies dealing with different aspects of the biological effects of resveratrol, its translation to clinics is far from reality due to a variety of challenges. In this review, we discuss the issues and questions associated with resveratrol becoming an effective in vivo anticancer drug, from basic metabolic issues to the problems faced by incomplete understanding of the mechanism(s) of action in the body. We also explore efforts taken by researchers, both public and private, to contend with some of these issues. By examining the published data and previous clinical trials, we have attempted to identify the problems and issues that hinder the clinical translation of resveratrol for cancer management. This article is part of a Special Issue entitled: Resveratrol: Challenges in translating pre-clinical findings to improved patient outcomes.


Subject(s)
Antineoplastic Agents/therapeutic use , Clinical Trials as Topic , Neoplasms/drug therapy , Stilbenes/therapeutic use , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Humans , Neoplasms/metabolism , Resveratrol , Stilbenes/pharmacokinetics , Stilbenes/pharmacology , Translational Research, Biomedical
16.
Cell Cycle ; 13(18): 2821-6, 2014.
Article in English | MEDLINE | ID: mdl-25486469

ABSTRACT

Melanoma continues to cause more deaths than any other skin cancer, necessitating the development of new avenues of treatment. One promising new opportunity comes in the form of mechanism-based therapeutic targets. We recently reported the overexpression and delocalization of the class III histone deacetylase SIRT1 in melanoma, and demonstrated that its small molecule inhibition via Tenovin-1 decreased cell growth and viability of melanoma cells, possibly by a p53 mediated induction of p21. Here, we support our data using additional SIRT inhibitors, viz. Sirtinol and Ex-527, which suggests possible benefits of concomitantly inhibiting more than one Sirtuin for an effective cancer management strategy. This "Extra View" paper also includes a discussion of our results in the context of similar recent and concurrent studies. Furthermore, we expand upon our findings in an analysis of new research that may link the cellular localization and growth effects of SIRT1 with the PI3K signaling pathway.


Subject(s)
Benzamides/therapeutic use , Carbazoles/therapeutic use , Group III Histone Deacetylases/antagonists & inhibitors , Melanoma/drug therapy , Molecular Targeted Therapy , Naphthols/therapeutic use , Apoptosis/drug effects , Benzamides/pharmacology , Carbazoles/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Clone Cells , Humans , Melanoma/pathology , Models, Biological , Naphthols/pharmacology , Signal Transduction/drug effects
17.
Oncotarget ; 5(11): 3651-61, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-25004451

ABSTRACT

Studies have shown that vitamin E and selenium possess antiproliferative effects against prostate cancer (PCa). However, results from the Selenium and Vitamin E Cancer Prevention Trial (SELECT) suggest that vitamin E (α-tocopheryl acetate; 400 mg) and/or selenium (L-selenomethionine; 200 µg) were ineffective against PCa in humans. It is arguable that the selected dose/formulation of vitamin E/selenium were not optimal in SELECT. Thus, additional studies are needed to define the appropriate formulations/dose regimens of these agents. Here, we investigated the effect of methaneseleninic acid (MSA; 41 µg/kg) and/or γ-tocopherol (γT; 20.8 mg/kg or 41.7 mg/kg) in Nu/J mice implanted with 22Rν1 tumors. MSA (41 µg/kg) and γT (20.8 mg/kg) combination was most consistent in imparting anti-proliferative response; resulting in a significant decrease in i) tumor volume/weight, ii) serum PSA, and iii) Ki-67 immunostaining. Further, we observed i) an upregulation of pro-apoptosis Bax and a down-regulation of the pro-survival Bcl2, and ii) an increase in pro-apoptosis Bad. Furthermore, the combination resulted in a modulation of apolipoprotein E, selenoprotein P and Nrf2 in a fashion that favors antiproliferative responses. Overall, our study suggested that a combination of MSA and γT, at lower dose regimen, could be useful in PCa management.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Prostatic Neoplasms/drug therapy , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Humans , Male , Mice , Mice, Nude , Organoselenium Compounds/administration & dosage , Prostatic Neoplasms/pathology , Xenograft Model Antitumor Assays , gamma-Tocopherol/administration & dosage
18.
Antioxid Redox Signal ; 20(18): 2982-96, 2014 Jun 20.
Article in English | MEDLINE | ID: mdl-24111846

ABSTRACT

SIGNIFICANCE: Skin, a complex organ and the body's first line of defense against environmental insults, plays a critical role in maintaining homeostasis in an organism. This balance is maintained through a complex network of cellular machinery and signaling events, including those regulating oxidative stress and circadian rhythms. These regulatory mechanisms have developed integral systems to protect skin cells and to signal to the rest of the body in the event of internal and environmental stresses. RECENT ADVANCES: Interestingly, several signaling pathways and many bioactive molecules have been found to be involved and even important in the regulation of oxidative stress and circadian rhythms, especially in the skin. It is becoming increasingly evident that these two regulatory systems may, in fact, be interconnected in the regulation of homeostasis. Important examples of molecules that connect the two systems include serotonin, melatonin, vitamin D, and vitamin A. CRITICAL ISSUES: Excessive reactive oxygen species and/or dysregulation of antioxidant system and circadian rhythms can cause critical errors in maintaining proper barrier function and skin health, as well as overall homeostasis. Unfortunately, the modern lifestyle seems to contribute to increasing alterations in redox balance and circadian rhythms, thereby posing a critical problem for normal functioning of the living system. FUTURE DIRECTIONS: Since the oxidative stress and circadian rhythm systems seem to have areas of overlap, future research needs to be focused on defining the interactions between these two important systems. This may be especially important in the skin where both systems play critical roles in protecting the whole body.


Subject(s)
Circadian Clocks/physiology , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism , Skin/metabolism , Circadian Rhythm/physiology , Humans , Signal Transduction/physiology
19.
Mol Cancer Ther ; 6(3): 1151-8, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17363508

ABSTRACT

Glycogen synthase kinase-3beta (GSK-3beta) is an important regulator of cell proliferation and survival. Conflicting observations have been reported regarding the regulation of GSK-3beta and extracellular signal-regulated kinase (ERK1/2) in cancer cells. In this study, we found that raf-1 activation in human medullary thyroid cancer cells, TT cells, resulted in phosphorylation of GSK-3beta. Inactivation of GSK-3beta in TT cells with well-known GSK-3beta inhibitors such as lithium chloride (LiCl) and SB216763 is associated with both growth suppression and a significant decrease in neuroendocrine markers such as human achaete-scute complex-like 1 and chromogranin A. Growth inhibition by GSK-3beta inactivation was found to be associated with cell cycle arrest due to an increase in the levels of cyclin-dependent kinase inhibitors such as p21, p27, and p15. Additionally, LiCl-treated TT xenograft mice had a significant reduction in tumor volume compared with those treated with control. For the first time, we show that GSK-3beta is a key downstream target of the raf-1 pathway in TT cells. Also, our results show that inactivation of GSK-3beta alone is sufficient to inhibit the growth of TT cells both in vitro and in vivo.


Subject(s)
Carcinoma, Medullary/prevention & control , Glycogen Synthase Kinase 3/antagonists & inhibitors , Indoles/pharmacology , Maleimides/pharmacology , Proto-Oncogene Proteins c-raf/metabolism , Thyroid Neoplasms/prevention & control , Adjuvants, Immunologic/pharmacology , Animals , Apoptosis/drug effects , Apoptosis/physiology , Carcinoma, Medullary/enzymology , Carcinoma, Medullary/pathology , Cell Cycle/drug effects , Cell Cycle/physiology , Cell Line, Tumor/drug effects , Cell Line, Tumor/metabolism , Cell Proliferation/drug effects , Chromogranin A/metabolism , Cyclin D1/metabolism , Cyclin-Dependent Kinase Inhibitor p15/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Humans , Lithium Chloride/pharmacology , Mice , Mice, Nude , NIH 3T3 Cells/drug effects , Phosphorylation , Proto-Oncogene Proteins c-raf/genetics , Signal Transduction/drug effects , Thyroid Neoplasms/enzymology , Thyroid Neoplasms/pathology , Xenograft Model Antitumor Assays
20.
J Biol Chem ; 281(52): 39819-30, 2006 Dec 29.
Article in English | MEDLINE | ID: mdl-17090547

ABSTRACT

The role of NOTCH1 as an oncogene or tumor suppressor appears to be cell type-specific. Medullary thyroid cancer (MTC) cells characteristically express the transcription factor ASCL1 (achaete-scute complex-like 1) as well as high levels of the neuroendocrine (NE) markers calcitonin and chromogranin A (CgA). In this study, we show that the active NOTCH1 intracellular domain is absent in human MTC tumor tissue samples and MTC-TT cells. To determine the effects of NOTCH1 expression, we created a doxycycline-inducible NOTCH1 intracellular domain in MTC cells (TT-NOTCH cells). Treatment of TT-NOTCH cells with doxycycline led to dose-dependent induction of NOTCH1 protein with corresponding decreases in ASCL1 protein and NE hormones. ASCL1 promoter-reporter assay and Northern analysis revealed that ASCL1 reduction by NOTCH1 activation is predominantly via silencing of ASCL1 gene transcription. Overexpression of ASCL1 in MTC cells indicated that CgA expression is highly dependent on the levels of ASCL1. This was further confirmed by experiments using small interfering RNA against ASCL1, in which reduction in ASCL1 led to reduction in both CgA and calcitonin. Furthermore, we demonstrate that NOTCH1 signaling activation leads to ERK1/2 phosphorylation, but that reduction in NE markers is independent of ERK1/2 activation. Activation of NOTCH1 resulted in significant MTC cell growth inhibition. Notably, reduction in MTC cell growth was dependent on the level of NOTCH1 protein present. Moreover, no increase in growth upon expression of ASCL1 in NOTCH1-activated cells was observed, indicating that the growth suppression observed upon NOTCH1 activation is independent of ASCL1 reduction. Mechanistically, we show that MTC cell growth inhibition by NOTCH1 is mediated by cell cycle arrest associated with up-regulation of p21.


Subject(s)
Carcinoma, Medullary/genetics , Cell Proliferation , Growth Inhibitors/genetics , Intracellular Space/physiology , Neurosecretory Systems/physiology , Receptor, Notch1/biosynthesis , Receptor, Notch1/genetics , Thyroid Neoplasms/genetics , Basic Helix-Loop-Helix Transcription Factors/biosynthesis , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/physiology , Carcinoma, Medullary/metabolism , Cell Cycle/genetics , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p21/biosynthesis , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/physiology , Growth Inhibitors/physiology , Humans , Intracellular Space/chemistry , Phenotype , Protein Structure, Tertiary/genetics , Receptor, Notch1/physiology , Thyroid Neoplasms/metabolism , Up-Regulation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...