Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pest Manag Sci ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38923745

ABSTRACT

BACKGROUND: An innovative version of the sterile insect technique (SIT) for pest control, called boosted SIT, relies on the use of sterile males coated with a biocide to control a target wild pest population of the same species. The objective of the present study was to assess the relevance of such technology to control the fruit fly Bactrocera dorsalis and fruit losses in mango orchards using. An agent-based simulation model named BOOSTIT was used to explore the reduction of fruit losses thank to sterile male fruit flies control and economic benefits according to different strategies of sterile male release. The simulation considered a landscape of 30.25 ha made up of four mango orchards. RESULTS: The SIT and the boosted SIT reduced fruit losses when releases were made before the mango fruiting period. According to model simulations, releases should be performed at least seven times at 2-week intervals and with a sterile/wild male ratio of at least 10:1. Considering the benefit/cost ratio (BCR), few releases should be done with a late start date. The BCR showed economic gains from the two control methods, the number of saved fruits and BCR being higher for SIT. CONCLUSION: Our simulations showed that SIT would have better results than the boosted SIT to contribute to an effective control of Bactrocera dorsalis at the scale of a small landscape. We highlight the need for laboratory studies of other types of pathogen to find a suitable one with higher incubation time and lower cost. © 2024 Society of Chemical Industry.

2.
Trop Anim Health Prod ; 47(8): 1553-60, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26255184

ABSTRACT

Jatropha curcas is a drought-resistant shrub belonging to the Euphorbiaceae family. The kernel contains approximately 60 % lipid in dry matter, and the meal obtained after oil extraction could be an exceptional source of protein for family poultry farming, in the absence of curcin and, especially, some diterpene derivatives phorbol esters that are partially lipophilic. The nutrient digestibility of J. curcas kernel meal (JKM), obtained after partial physicochemical deoiling was thus evaluated in broiler chickens. Twenty broiler chickens, 6 weeks old, were maintained in individual metabolic cages and divided into four groups of five animals, according to a 4 × 4 Latin square design where deoiled JKM was incorporated into grinded corn at 0, 4, 8, and 12 % levels (diets 0, 4, 8, and 12 J), allowing measurement of nutrient digestibility by the differential method. The dry matter (DM) and organic matter (OM) digestibility of diets was affected to a low extent by JKM (85 and 86 % in 0 J and 81 % in 12 J, respectively) in such a way that DM and OM digestibility of JKM was estimated to be close to 50 %. The ether extract (EE) digestibility of JKM remained high, at about 90 %, while crude protein (CP) and crude fiber (CF) digestibility were largely impacted by JKM, with values closed to 40 % at the highest levels of incorporation. J. curcas kernel presents various nutrient digestibilities but has adverse effects on CP and CF digestibility of the diet. The effects of an additional heat or biological treatment on JKM remain to be assessed.


Subject(s)
Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Chickens , Jatropha , Solvents/chemistry , Animal Husbandry , Animals , Diet/veterinary , Phorbol Esters/chemistry , Senegal , Temperature
3.
Vet World ; 8(8): 994-1005, 2015 Aug.
Article in English | MEDLINE | ID: mdl-27047188

ABSTRACT

AIM: In Senegal, uncontrolled cross-breeding of cattle breeds and changes in production systems are assumed to lead to an increase of gene flow between populations. This might constitute a relevant threat to livestock improvement. Therewith, this study was carried out to assess the current genetic diversity and the phylogenetic relationships of the four native Senegalese cattle breeds (Gobra zebu, Maure zebu, Djakoré, and N'Dama). METHODS: Genomic DNA was isolated from blood samples of 120 unrelated animals collected from three agro-ecological areas of Senegal according to their phenotypic traits. Genotyping was done using 11 specific highly polymorphic microsatellite makers recommended by Food and Agriculture Organization. The basic measures of genetic variation and phylogenetic trees were computed using bioinformatics' software. RESULTS: A total of 115 alleles were identified with a number of alleles (Na) at one locus ranging from 6 to 16. All loci were polymorphic with a mean polymorphic information content of 0.76. The mean allelic richness (Rs) lay within the narrow range of 5.14 in N'Dama taurine to 6.10 in Gobra zebu. While, the expected heterozygosity (HE) per breed was high in general with an overall mean of 0.76±0.04. Generally, the heterozygote deficiency (FIS) of 0.073±0.026 was relatively due to inbreeding among these cattle breeds or the occurrence of population substructure. The high values of allelic and gene diversity showed that Senegalese native cattle breeds represented an important reservoir of genetic variation. The genetic distances and clustering trees concluded that the N'Dama cattle were most distinct among the investigated cattle populations. So, the principal component analyses showed qualitatively that there was an intensive genetic admixture between the Gobra zebu and Maure zebu breeds. CONCLUSIONS: The broad genetic diversity in Senegalese cattle breeds will allow for greater opportunities for improvement of productivity and adaptation relative to global changes. For the development of sustainable breeding and crossbreeding programs of Senegalese local breeds, effective management is needed towards genetic selection and transhumance to ensure their long-term survival.

4.
ACS Appl Mater Interfaces ; 6(23): 21484-93, 2014 Dec 10.
Article in English | MEDLINE | ID: mdl-25398074

ABSTRACT

The microstructure, morphology, and growth dynamics of hexa-peri-hexabenzocoronene (HBC, C42H18) thin films deposited on inert substrates of similar surface energies are studied with particular emphasis on the influence of substrate symmetry and substrate-molecule lattice matching on the resulting films of this material. By combining atomic force microscopy (AFM) with X-ray diffraction (XRD), X-ray absorption spectroscopy (NEXAFS), and in situ X-ray reflectivity (XRR) measurements, it is shown that HBC forms polycrystalline films on SiO2, where molecules are oriented in an upright fashion and adopt the known bulk structure. Remarkably, HBC films deposited on highly oriented pyrolytic graphite (HOPG) exhibit a new, substrate-induced polymorph, where all molecules adopt a recumbent orientation with planar π-stacking. Formation of this new phase, however, depends critically on the coherence of the underlying graphite lattice since HBC grown on defective HOPG reveals the same orientation and phase as on SiO2. These results therefore demonstrate that the resulting film structure and morphology are not solely governed by the adsorption energy but also by the presence or absence of symmetry- and lattice-matching between the substrate and admolecules. Moreover, it highlights that weakly interacting substrates of high quality and coherence can be useful to induce new polymorphs with distinctly different molecular arrangements than the bulk structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...