Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
ACS Omega ; 4(4): 7436-7447, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-31459840

ABSTRACT

We used high-throughput experimental screening methods to unveil the physical and chemical properties of Mn1-x Zn x O wurtzite alloys and identify their appropriate composition for effective water splitting application. The Mn1-x Zn x O thin films were synthesized using combinatorial pulsed laser deposition, permitting for characterization of a wide range of compositions with x varying from 0 to 1. The solubility limit of ZnO in MnO was determined using the disappearing phase method from X-ray diffraction and X-ray fluorescence data and found to increase with decreasing substrate temperature due to kinetic limitations of the thin-film growth at relatively low temperature. Optical measurements indicate the strong reduction of the optical band gap down to 2.1 eV at x = 0.5 associated with the rock salt-to-wurtzite structural transition in Mn1-x Zn x O alloys. Transmission electron microscopy results show evidence of a homogeneous wurtzite alloy system for a broad range of Mn1-x Zn x O compositions above x = 0.4. The wurtzite Mn1-x ZnxO samples with the 0.4 < x < 0.6 range were studied as anodes for photoelectrochemical water splitting, with a maximum current density of 340 µA cm-2 for 673 nm-thick films. These Mn1-x Zn x O films were stable in pH = 10, showing no evidence of photocorrosion or degradation after 24 h under water oxidation conditions. Doping Mn1-x Zn x O materials with Ga dramatically increases the electrical conductivity of Mn1-x Zn x O up to ∼1.9 S/cm for x = 0.48, but these doped samples are not active in water splitting. Mott-Schottky and UPS/XPS measurements show that the presence of dopant atoms reduces the space charge region and increases the number of mid-gap surface states. Overall, this study demonstrates that Mn1-x Zn x O alloys hold promise for photoelectrochemical water splitting, which could be enhanced with further tailoring of their electronic properties.

2.
Science ; 364(6439): 475-479, 2019 05 03.
Article in English | MEDLINE | ID: mdl-31000592

ABSTRACT

All-perovskite-based polycrystalline thin-film tandem solar cells have the potential to deliver efficiencies of >30%. However, the performance of all-perovskite-based tandem devices has been limited by the lack of high-efficiency, low-band gap tin-lead (Sn-Pb) mixed-perovskite solar cells (PSCs). We found that the addition of guanidinium thiocyanate (GuaSCN) resulted in marked improvements in the structural and optoelectronic properties of Sn-Pb mixed, low-band gap (~1.25 electron volt) perovskite films. The films have defect densities that are lower by a factor of 10, leading to carrier lifetimes of greater than 1 microsecond and diffusion lengths of 2.5 micrometers. These improved properties enable our demonstration of >20% efficient low-band gap PSCs. When combined with wider-band gap PSCs, we achieve 25% efficient four-terminal and 23.1% efficient two-terminal all-perovskite-based polycrystalline thin-film tandem solar cells.

3.
J Am Chem Soc ; 141(14): 5972-5979, 2019 Apr 10.
Article in English | MEDLINE | ID: mdl-30882210

ABSTRACT

Organic-inorganic halide perovskites incorporating two-dimensional (2D) structures have shown promise for enhancing the stability of perovskite solar cells (PSCs). However, the bulky spacer cations often limit charge transport. Here, we report on a simple approach based on molecular design of the organic spacer to improve the transport properties of 2D perovskites, and we use phenethylammonium (PEA) as an example. We demonstrate that by fluorine substitution on the para position in PEA to form 4-fluorophenethylammonium (F-PEA), the average phenyl ring centroid-centroid distances in the organic layer become shorter with better aligned stacking of perovskite sheets. The impact is enhanced orbital interactions and charge transport across adjacent inorganic layers as well as increased carrier lifetime and reduced trap density. Using a simple perovskite deposition at room temperature without using any additives, we obtained a power conversion efficiency of >13% for (F-PEA)2MA4Pb5I16-based PSCs. In addition, the thermal stability of 2D PSCs based on F-PEA is significantly enhanced compared to those based on PEA.

4.
Adv Mater ; 30(25): e1800559, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29744947

ABSTRACT

Many technologically critical materials are metastable under ambient conditions, yet the understanding of how to rationally design and guide the synthesis of these materials is limited. This work presents an integrated approach that targets a metastable lead-free piezoelectric polymorph of SrHfO3 . First-principles calculations predict that the previous experimentally unrealized, metastable P4mm phase of SrHfO3 should exhibit a direct piezoelectric response (d33 ) of 36.9 pC N-1 (compared to d33 = 0 for the ground state). Combining computationally optimized substrate selection and synthesis conditions lead to the epitaxial stabilization of the polar P4mm phase of SrHfO3 on SrTiO3 . The films are structurally consistent with the theory predictions. A ferroelectric-induced large signal effective converse piezoelectric response of 5.2 pm V-1 for a 35 nm film is observed, indicating the ability to predict and target multifunctionality. This illustrates a coupled theory-experimental approach to the discovery and realization of new multifunctional polymorphs.

5.
Sci Adv ; 3(6): e1700270, 2017 06.
Article in English | MEDLINE | ID: mdl-28630928

ABSTRACT

Structure and composition control the behavior of materials. Isostructural alloying is historically an extremely successful approach for tuning materials properties, but it is often limited by binodal and spinodal decomposition, which correspond to the thermodynamic solubility limit and the stability against composition fluctuations, respectively. We show that heterostructural alloys can exhibit a markedly increased range of metastable alloy compositions between the binodal and spinodal lines, thereby opening up a vast phase space for novel homogeneous single-phase alloys. We distinguish two types of heterostructural alloys, that is, those between commensurate and incommensurate phases. Because of the structural transition around the critical composition, the properties change in a highly nonlinear or even discontinuous fashion, providing a mechanism for materials design that does not exist in conventional isostructural alloys. The novel phase diagram behavior follows from standard alloy models using mixing enthalpies from first-principles calculations. Thin-film deposition demonstrates the viability of the synthesis of these metastable single-phase domains and validates the computationally predicted phase separation mechanism above the upper temperature bound of the nonequilibrium single-phase region.

6.
ACS Appl Mater Interfaces ; 8(20): 13086-93, 2016 05 25.
Article in English | MEDLINE | ID: mdl-27145398

ABSTRACT

With the ultimate goal of finding new polymorphs through targeted synthesis conditions and techniques, we outline a computational framework to select optimal substrates for epitaxial growth using first principle calculations of formation energies, elastic strain energy, and topological information. To demonstrate the approach, we study the stabilization of metastable VO2 compounds which provides a rich chemical and structural polymorph space. We find that common polymorph statistics, lattice matching, and energy above hull considerations recommends homostructural growth on TiO2 substrates, where the VO2 brookite phase would be preferentially grown on the a-c TiO2 brookite plane while the columbite and anatase structures favor the a-b plane on the respective TiO2 phases. Overall, we find that a model which incorporates a geometric unit cell area matching between the substrate and the target film as well as the resulting strain energy density of the film provide qualitative agreement with experimental observations for the heterostructural growth of known VO2 polymorphs: rutile, A and B phases. The minimal interfacial geometry matching and estimated strain energy criteria provide several suggestions for substrates and substrate-film orientations for the heterostructural growth of the hitherto hypothetical anatase, brookite, and columbite polymorphs. These criteria serve as a preliminary guidance for the experimental efforts stabilizing new materials and/or polymorphs through epitaxy. The current screening algorithm is being integrated within the Materials Project online framework and data and hence publicly available.

7.
J Phys Condens Matter ; 28(9): 094007, 2016 Mar 09.
Article in English | MEDLINE | ID: mdl-26871256

ABSTRACT

The electronic structure of inorganic semiconductor interfaces functionalized with extended π-conjugated organic molecules can be strongly influenced by localized gap states or point defects, often present at low concentrations and hard to identify spectroscopically. At the same time, in transparent conductive oxides such as ZnO, the presence of these gap states conveys the desirable high conductivity necessary for function as electron-selective interlayer or electron collection electrode in organic optoelectronic devices. Here, we report on the direct spectroscopic detection of a donor state within the band gap of highly conductive zinc oxide by two-photon photoemission spectroscopy. We show that adsorption of the prototypical organic acceptor C60 quenches this state by ground-state charge transfer, with immediate consequences on the interfacial energy level alignment. Comparison with computational results suggests the identity of the gap state as a near-surface-confined oxygen vacancy.

8.
Adv Mater ; 28(20): 3960-5, 2016 05.
Article in English | MEDLINE | ID: mdl-26596518

ABSTRACT

Electronic coupling and ground-state charge transfer at the C60 /ZnO hybrid interface is shown to localize carriers in the C60 phase. This effect, revealed by resonant X-ray photoemission, arises from interfacial hybridization between C60 and ZnO. Such localization at carrier-selective electrodes and interlayers may lead to severely reduced carrier harvesting efficiencies and increased recombination rates in organic electronic devices.

9.
Phys Chem Chem Phys ; 17(23): 15355-64, 2015 Jun 21.
Article in English | MEDLINE | ID: mdl-26000570

ABSTRACT

A co-solvent, dimethylsulfoxide (DMSO), is added to the aqueous chemical "bath" deposition (CBD) process used to grow ZnOS buffer layers for thin film Cu2ZnSnSe4 (CZTSe) solar cells. Device performance improves markedly as fill factors increase from 0.17 to 0.51 upon the co-solvent addition. X-ray photoelectron spectroscopy (XPS) analyses are presented for quasi-in situ CZTSe/CBD-ZnOS interfaces prepared under an inert atmosphere and yield valence band offsets equal to -1.0 eV for both ZnOS preparations. When combined with optical band gap data, conduction band offsets exceed 1 eV for the water and the water/DMSO solutions. XPS measurements show increased downward band bending in the CZTSe absorber layer when the ZnOS buffer layer is deposited from water only. Admittance spectroscopy data shows that the ZnOS deposited from water increases the built-in potential (Vbi) yet these solar cells perform poorly compared to those made with DMSO added. The band energy offsets imply an alternate form of transport through this junction. Possible mechanisms are discussed, which circumvent the otherwise large conduction band spike between CZTSe and ZnOS, and improve functionality with the low-band gap absorber, CZTSe (Eg = 0.96 eV).

10.
Nanoscale ; 7(15): 6556-66, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25790468

ABSTRACT

Semiconducting single-walled carbon nanotubes (s-SWCNTs) are promising candidates as the active layer in photovoltaics (PV), particularly for niche applications where high infrared absorbance and/or semi-transparent solar cells are desirable. Most current fabrication strategies for SWCNT PV devices suffer from relatively high surface roughness and lack nanometer-scale deposition precision, both of which may hamper the reproducible production of ultrathin devices. Additionally, detailed optical models of SWCNT PV devices are lacking, due in part to a lack of well-defined optical constants for high-purity s-SWCNT thin films. Here, we present an optical model that accurately reconstructs the shape and magnitude of spectrally resolved external quantum efficiencies for ultrathin (7,5) s-SWCNT/C60 solar cells that are deposited by ultrasonic spraying. The ultrasonic spraying technique enables thickness tuning of the s-SWCNT layer with nanometer-scale precision, and consistently produces devices with low s-SWCNT film average surface roughness (Rq of <5 nm). Our optical model, based entirely on measured optical constants of each layer within the device stack, enables quantitative predictions of thickness-dependent relative photocurrent contributions of SWCNTs and C60 and enables estimates of the exciton diffusion lengths within each layer. These results establish routes towards rational performance improvements and scalable fabrication processes for ultra-thin SWCNT-based solar cells.

11.
Adv Mater ; 26(27): 4711-6, 2014 Jul 16.
Article in English | MEDLINE | ID: mdl-24830796

ABSTRACT

The electronic structure of the hybrid interface between ZnO and the prototypical organic semiconductor PTCDI is investigated via a combination of ultraviolet and X-ray photoelectron spectroscopy (UPS/XPS) and density functional theory (DFT) calculations. The interfacial electronic interactions lead to a large interface dipole due to substantial charge transfer from ZnO to 3,4,9,10-perylenetetracarboxylicdiimide (PTCDI), which can be properly described only when accounting for surface defects that confer ZnO its n-type properties.


Subject(s)
Electrons , Imides/chemistry , Perylene/analogs & derivatives , Semiconductors , Zinc Oxide/chemistry , Electron Transport , Models, Molecular , Molecular Conformation , Perylene/chemistry , Surface Properties
12.
Rev Sci Instrum ; 84(5): 053905, 2013 May.
Article in English | MEDLINE | ID: mdl-23742564

ABSTRACT

The Seebeck coefficient is a key indicator of the majority carrier type (electrons or holes) in a material. The recent trend toward the development of combinatorial materials research methods has necessitated the development of a new high-throughput approach to measuring the Seebeck coefficient at spatially distinct points across any sample. The overall strategy of the high-throughput experiments is to quickly identify the region of interest on the sample at some expense of accuracy, and then study this region by more conventional techniques. The instrument for spatially resolved Seebeck coefficient measurements reported here relies on establishing a temperature difference across the entire compositionally graded thin-film and consecutive mapping of the resulting voltage as a function of position, which facilitates the temperature-dependent measurements up to 400 °C. The results of the designed instrument are verified at ambient temperature to be repeatable over 10 identical samples and accurate to within 10% versus conventional Seebeck coefficient measurements over the -100 to +150 µV/K range using both n-type and p-type conductive oxides as test cases. The developed instrument was used to determine the sign of electrical carriers of compositionally graded Zn-Co-O and Ni-Co-O libraries prepared by combinatorial sputtering. As a result of this study, both cobalt-based materials were determined to have p-type conduction over a broad single-phase region of chemical compositions and small variation of the Seebeck coefficient over the entire investigated range of compositions and temperature.

14.
Opt Express ; 17(17): 15128-33, 2009 Aug 17.
Article in English | MEDLINE | ID: mdl-19687990

ABSTRACT

Ca(0.28)Ba(0.72)Nb(2)O(6) (CBN-28) waveguides based on thin film technology were fabricated on SiO(2)/(100) Si substrates. By using X-ray diffraction, we confirmed the preferential c-axis orientation of the CBN structures. An effective unclamped electro-optic r33 coefficient of 12 pm/V was measured in CBN thin films by using an ellipsometric technique in reflection geometry. In addition, by means of a Fabry-Perot technique, the propagation losses of our strip loaded waveguides were estimated to be as low as 4.8 dB/cm and 6.5 dB/cm at telecommunication wavelengths for the fundamental TE and TM modes, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...