Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 5175, 2021 08 30.
Article in English | MEDLINE | ID: mdl-34462445

ABSTRACT

Calcitonin receptor (Calcr)-expressing neurons of the nucleus tractus solitarius (NTS; CalcrNTS cells) contribute to the long-term control of food intake and body weight. Here, we show that Prlh-expressing NTS (PrlhNTS) neurons represent a subset of CalcrNTS cells and that Prlh expression in these cells restrains body weight gain in the face of high fat diet challenge in mice. To understand the relationship of PrlhNTS cells to hypothalamic feeding circuits, we determined the ability of PrlhNTS-mediated signals to overcome enforced activation of AgRP neurons. We found that PrlhNTS neuron activation and Prlh overexpression in PrlhNTS cells abrogates AgRP neuron-driven hyperphagia and ameliorates the obesity of mice deficient in melanocortin signaling or leptin. Thus, enhancing Prlh-mediated neurotransmission from the NTS dampens hypothalamically-driven hyperphagia and obesity, demonstrating that NTS-mediated signals can override the effects of orexigenic hypothalamic signals on long-term energy balance.


Subject(s)
Obesity/metabolism , Prolactin-Releasing Hormone/metabolism , Solitary Nucleus/metabolism , Animals , Appetite , Diet , Eating , Energy Metabolism , Female , Humans , Hypothalamus/metabolism , Leptin/metabolism , Male , Melanocortins/metabolism , Mice , Mice, Inbred C57BL , Neurons/metabolism , Obesity/genetics , Obesity/physiopathology , Obesity/psychology , Prolactin-Releasing Hormone/genetics , Receptors, Calcitonin/genetics , Receptors, Calcitonin/metabolism
2.
JCI Insight ; 5(7)2020 04 09.
Article in English | MEDLINE | ID: mdl-32182221

ABSTRACT

Leptin receptor-expressing (LepRb-expressing) neurons of the nucleus tractus solitarius (NTS; LepRbNTS neurons) receive gut signals that synergize with leptin action to suppress food intake. NTS neurons that express preproglucagon (Ppg) (and that produce the food intake-suppressing PPG cleavage product glucagon-like peptide-1 [GLP1]) represent a subpopulation of mouse LepRbNTS cells. Using Leprcre, Ppgcre, and Ppgfl mouse lines, along with Designer Receptors Exclusively Activated by Designer Drugs (DREADDs), we examined roles for Ppg in GLP1NTS and LepRbNTS cells for the control of food intake and energy balance. We found that the cre-dependent ablation of NTS Ppgfl early in development or in adult mice failed to alter energy balance, suggesting the importance of pathways independent of NTS GLP1 for the long-term control of food intake. Consistently, while activating GLP1NTS cells decreased food intake, LepRbNTS cells elicited larger and more durable effects. Furthermore, while the ablation of NTS Ppgfl blunted the ability of GLP1NTS neurons to suppress food intake during activation, it did not impact the suppression of food intake by LepRbNTS cells. While Ppg/GLP1-mediated neurotransmission plays a central role in the modest appetite-suppressing effects of GLP1NTS cells, additional pathways engaged by LepRbNTS cells dominate for the suppression of food intake.


Subject(s)
Eating , Gene Expression Regulation , Glucagon-Like Peptide 1/metabolism , Neurons/metabolism , Receptors, Leptin/biosynthesis , Solitary Nucleus/metabolism , Animals , Mice , Mice, Knockout , Receptors, Leptin/genetics
3.
Cell Metab ; 31(2): 301-312.e5, 2020 02 04.
Article in English | MEDLINE | ID: mdl-31955990

ABSTRACT

To understand hindbrain pathways involved in the control of food intake, we examined roles for calcitonin receptor (CALCR)-containing neurons in the NTS. Ablation of NTS Calcr abrogated the long-term suppression of food intake, but not aversive responses, by CALCR agonists. Similarly, activating CalcrNTS neurons decreased food intake and body weight but (unlike neighboring CckNTS cells) failed to promote aversion, revealing that CalcrNTS neurons mediate a non-aversive suppression of food intake. While both CalcrNTS and CckNTS neurons decreased feeding via projections to the PBN, CckNTS cells activated aversive CGRPPBN cells while CalcrNTS cells activated distinct non-CGRP PBN cells. Hence, CalcrNTS cells suppress feeding via non-aversive, non-CGRP PBN targets. Additionally, silencing CalcrNTS cells blunted food intake suppression by gut peptides and nutrients, increasing food intake and promoting obesity. Hence, CalcrNTS neurons define a hindbrain system that participates in physiological energy balance and suppresses food intake without activating aversive systems.


Subject(s)
Eating , Energy Metabolism , Neurons/metabolism , Receptors, Calcitonin/physiology , Solitary Nucleus/metabolism , Animals , Body Weight , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/cytology , Solitary Nucleus/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...