Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 24(1): 384, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724935

ABSTRACT

BACKGROUND: Semi-dwarfing alleles are used widely in cereals to confer improved lodging resistance and assimilate partitioning. The most widely deployed semi-dwarfing alleles in rice and barley encode the gibberellin (GA)-biosynthetic enzyme GA 20-OXIDASE2 (GA20OX2). The hexaploid wheat genome carries three homoeologous copies of GA20OX2, and because of functional redundancy, loss-of-function alleles of a single homoeologue would not be selected in wheat breeding programmes. Instead, approximately 70% of wheat cultivars carry gain-of-function mutations in REDUCED HEIGHT 1 (RHT1) genes that encode negative growth regulators and are degraded in response to GA. Semi-dwarf Rht-B1b or Rht-D1b alleles encode proteins that are insensitive to GA-mediated degradation. However, because RHT1 is expressed ubiquitously these alleles have pleiotropic effects that confer undesirable traits in some environments. RESULTS: We have applied reverse genetics to combine loss-of-function alleles in all three homoeologues of wheat GA20OX2 and its paralogue GA20OX1 and evaluated their performance in three years of field trials. ga20ox1 mutants exhibited a mild height reduction (approximately 3%) suggesting GA20OX1 plays a minor role in stem elongation in wheat. ga20ox2 mutants have reduced GA1 content and are 12-32% shorter than their wild-type segregants, comparable to the effect of the Rht-D1b 'Green Revolution' allele. The ga20ox2 mutants showed no significant negative effects on yield components in the spring wheat variety 'Cadenza'. CONCLUSIONS: Our study demonstrates that chemical mutagenesis can expand genetic variation in polyploid crops to uncover novel alleles despite the difficulty in identifying appropriate mutations for some target genes and the negative effects of background mutations. Field experiments demonstrate that mutations in GA20OX2 reduce height in wheat, but it will be necessary to evaluate the effect of these alleles in different genetic backgrounds and environments to determine their value in wheat breeding as alternative semi-dwarfing alleles.


Subject(s)
Phenotype , Plant Proteins , Triticum , Triticum/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Mutation , Oryza/genetics , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Alleles , Gibberellins/metabolism , Genes, Plant
2.
Plant Genome ; 10(2)2017 07.
Article in English | MEDLINE | ID: mdl-28724065

ABSTRACT

Gametocidal (Gc) chromosomes or elements in species such as Eig are preferentially transmitted to the next generation through both the male and female gametes when introduced into wheat ( L.). Furthermore, any genes, such as genes that control agronomically important traits, showing complete linkage with Gc elements, are also transmitted preferentially to the next generation without the need for selection. The mechanism for the preferential transmission of the Gc elements appears to occur by the induction of extensive chromosome damage in any gametes that lack the Gc chromosome in question. Previous studies on the mechanism of the Gc action in indicates that at least two linked elements are involved. The first, the element, induces chromosome breakage in gametes, which have lost the Gc elements while the second, the element, prevents the chromosome breakage action of the breaker element in gametes which carry the Gc elements. In this study, we have used comparative genomic studies to map 54 single nucleotide polymorphism (SNP) markers in an 4S introgression segment in wheat and have also identified 18 candidate genes in for the breaker element through targeted sequencing of this 4S introgression segment. This valuable genomic resource will aide in further mapping the Gc locus that could be exploited in wheat breeding to produce new, superior varieties of wheat.


Subject(s)
Chromosomes, Plant , Ovule , Poaceae/genetics , Pollen , Genes, Plant , Genetic Linkage , Genotype , In Situ Hybridization , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...