Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Res Toxicol ; 36(12): 2019-2030, 2023 12 18.
Article in English | MEDLINE | ID: mdl-37963067

ABSTRACT

Hemoglobin (Hb) adducts are widely used in human biomonitoring due to the high abundance of hemoglobin in human blood, its reactivity toward electrophiles, and adducted protein stability for up to 120 days. In the present paper, we compared three methods of analysis of hemoglobin adducts: mass spectrometry of derivatized N-terminal Val adducts, mass spectrometry of N-terminal adducted hemoglobin peptides, and limited proteolysis mass spectrometry . Blood from human donors was incubated with a selection of contact allergens and other electrophiles, after which hemoglobin was isolated and subjected to three analysis methods. We found that the FIRE method was able to detect and reliably quantify N-terminal adducts of acrylamide, acrylic acid, glycidic acid, and 2,3-epoxypropyl phenyl ether (PGE), but it was less efficient for 2-methyleneglutaronitrile (2-MGN) and failed to detect 1-chloro-2,4-dinitrobenzene (DNCB). By contrast, bottom-up proteomics was able to determine the presence of adducts from all six electrophiles at both the N-terminus and reactive hemoglobin side chains. Limited proteolysis mass spectrometry, studied for four contact allergens (three electrophiles and a metal salt), was able to determine the presence of covalent hemoglobin adducts with one of the three electrophiles (DNCB) and coordination complexation with the nickel salt. Together, these approaches represent complementary tools in the study of the hemoglobin adductome.


Subject(s)
Dinitrochlorobenzene , Hemoglobins , Humans , Hemoglobins/analysis , Mass Spectrometry
2.
Chem Res Toxicol ; 36(6): 859-869, 2023 06 19.
Article in English | MEDLINE | ID: mdl-37184291

ABSTRACT

Propolis is a resin-like material produced by bees from the buds of poplar and cone-bearing trees and is used in beehive construction. Propolis is a common additive in various biocosmetics and health-related products, despite the fact that it is a well-known cause of contact allergy. Caffeic acid and its esters have been the primary suspects behind the sensitization potency of propolis-induced contact allergy. However, the chemical structures of the protein adducts formed between these haptens and skin proteins during the process of skin sensitization remain unknown. In this study, the reactivity of three main contact allergens found in propolis, namely, caffeic acid (CA), caffeic acid 1,1-dimethylallyl ester (CAAE), and caffeic acid phenethyl ester (CAPE), was investigated. These compounds were initially subjected to the kinetic direct peptide reactivity assay to categorize the sensitization potency of CA, CAAE, and CAPE, but the data obtained was deemed too unreliable to confidently classify their skin sensitization potential based on this assay alone. To further investigate the chemistry involved in generating possible skin allergy-inducing protein adducts, model peptide reactions with CA, CAAE, and CAPE were conducted and analyzed via liquid chromatography-high-resolution mass spectrometry. Reactions between CA, CAAE, and CAPE and a cysteine-containing peptide in the presence of oxygen, both in closed and open systems, were monitored at specific time points. These studies revealed the formation of two different adducts, one corresponding to thiol addition to the α,ß-unsaturated carbonyl region of the caffeic structure and the second corresponding to thiol addition to the catechol, after air oxidation to o-quinone. Observation of these peptide adducts classifies these compounds as prehaptens. Interestingly, no adduct formation was observed when the same reactions were performed under oxygen-free conditions, highlighting the importance of air oxidation processes in CA, CAAE, and CAPE adduct formation. Additionally, through NMR analysis, we found that thiol addition occurs at the C-2 position in the aromatic ring of the CA derivatives. Our results emphasize the importance of air oxidation in the sensitization potency of propolis and shed light on the chemical structures of the resultant haptens which could trigger allergic reactions in vivo.


Subject(s)
Hypersensitivity , Phenylethyl Alcohol , Propolis , Humans , Propolis/chemistry , Esters , Phenylethyl Alcohol/pharmacology , Cysteine , Haptens
3.
Chem Res Toxicol ; 36(2): 281-290, 2023 02 20.
Article in English | MEDLINE | ID: mdl-36652206

ABSTRACT

Epoxy resin systems (ERSs) are a class of thermosetting resins that become thermostable and insoluble polymers upon curing. They are widely used as components of protective surfaces, adhesives, and paints and in the manufacturing of composites in the plastics industry. The diglycidyl ether of bisphenol A (DGEBA) is used in 75-90% of ERSs and is thus by far the most used epoxy resin monomer (ERM). Unfortunately, DGEBA is a strong skin sensitizer and it is one of the most common causes of occupational contact dermatitis. Furthermore, DGEBA is synthesized from bisphenol A (BPA), which is a petroleum-derived chemical with endocrine-disruptive properties. In this work, we have used isosorbide, a renewable and nontoxic sugar-based material, as an alternative to BPA in the design of ERMs. Three different bis-epoxide isosorbide derivatives were synthesized: the diglycidyl ether of isosorbide (1) and two novel isosorbide-based bis-epoxides containing either a benzoic ester (2) or a benzyl ether linkage (3). Assessment of the in vivo sensitizing potency of the isosorbide bis-epoxides in the murine local lymph node assay (LLNA) showed that all three compounds were significantly less sensitizing than DGEBA, especially 2 which was nonsensitizing up to 25% w/v. The peptide reactivity showed the same order of reactivity as the LLNA, i.e., 2 being the least reactive, followed by 3 and then 1, which displayed similar peptide reactivity as DGEBA. Skin permeation of 2 and 3 was compared to DGEBA using ex vivo pig skin and static Franz cells. The preliminary investigations of the technical properties of the polymers formed from 1-3 were promising. Although further investigations of the technical properties are needed, all isosorbide bis-epoxides have the potential to be less sensitizing renewable replacements of DGEBA, especially 2 that had the lowest sensitizing potency in vivo as well as the lowest peptide reactivity.


Subject(s)
Epoxy Resins , Isosorbide , Animals , Mice , Swine , Epoxy Resins/chemistry , Benzhydryl Compounds , Epoxy Compounds/chemistry
4.
Front Toxicol ; 4: 856614, 2022.
Article in English | MEDLINE | ID: mdl-35465102

ABSTRACT

The immunological response in contact hypersensitivity is incited by small electrophilic compounds, known as haptens, that react with endogenous proteins after skin absorption. However, the identity of hapten-modified proteins seen as immunogenic remains as yet largely unknown. In a recent study, we have for the first time identified a hapten-modified protein in the local lymph nodes of mice treated topically with the model hapten tetramethylrhodamine isothiocyanate (TRITC). The TRITC modification was located on the N-terminal proline of the protein macrophage migration inhibitory factor (MIF). The focus of the current study was to investigate the presence of the same hapten-protein conjugate in blood samples from mice treated topically with TRITC. Furthermore, TRITC modifications of the two major blood proteins, namely hemoglobin (Hb) and albumin (Alb), as well as TRITC modifications of MIF other than the N-terminal proline, were examined. Following incubation with different molar ratios of TRITC, a proteomic approach was applied to characterize conjugate formation of the three aforementioned proteins, using high resolution mass spectrometry (HRMS). The targeted screening of the TRITC-treated mice blood and lymph node samples for these sites led to the identification of only the same TRITC-MIF conjugate previously detected in the lymph nodes. No Hb and Alb conjugates were detected. Quantification of both the TRITC-modified and unmodified N-terminal peptide of MIF in blood and lymph node samples gave interesting insights of MIF's role in murine contact hypersensitivity. Incubation of MIF with four different haptens encompassing different reactivity mechanisms and potencies, showed adduct formation at different amino acid residues, suggesting that MIF can be the preferred target for a wide variety of haptens. The present study provides essential progress toward understanding of hapten-protein conjugate formation in contact hypersensitivity and identifies hapten-modified MIF as a potential biomarker for this condition. Further investigation of MIF as a target protein can be a next step to determine if MIF is a biomarker that can be used to develop better diagnostic tools and targeted therapeutics for individuals with allergic contact dermatitis.

5.
Chem Res Toxicol ; 34(7): 1769-1781, 2021 07 19.
Article in English | MEDLINE | ID: mdl-34110810

ABSTRACT

Humans are exposed to large numbers of electrophiles from their diet, the environment, and endogenous physiological processes. Adducts formed at the N-terminal valine of hemoglobin are often used as biomarkers of human exposure to electrophilic compounds. We previously reported the formation of hemoglobin N-terminal valine adducts (added mass, 106.042 Da) in the blood of human smokers and nonsmokers and identified their structure as 4-hydroxybenzyl-Val. In the present work, mass spectrometry-based proteomics was utilized to identify additional sites for 4-hydroxybenzyl adduct formation at internal nucleophilic amino acid side chains within hemoglobin. Hemoglobin isolated from human blood was treated with para-quinone methide (para-QM) followed by global nanoLC-MS/MS and targeted nanoLC-MS/MS to identify amino acid residues containing the 4-hydroxybenzyl modification. Our experiments revealed the formation of 4-hydroxybenzyl adducts at the αHis20, αTyr24, αTyr42, αHis45, ßSer72, ßThr84, ßThr87, ßSer89, ßHis92, ßCys93, ßCys112, ßThr123, and ßHis143 residues (in addition to N-terminal valine) through characteristic MS/MS spectra. These amino acid side chains had variable reactivity toward para-QM with αHis45, αTyr42, ßCys93, ßHis92, and ßSer72 forming the largest numbers of adducts upon exposure to para-QM. Two additional mechanisms for formation of 4-hydroxybenzyl adducts in humans were investigated: exposure to 4-hydroxybenzaldehyde (4-HBA) followed by reduction and UV-mediated reactions of hemoglobin with tyrosine. Exposure of hemoglobin to a 5-fold molar excess of 4-HBA followed by reduction with sodium cyanoborohydride produced 4-hydroxybenzyl adducts at several amino acid side chains of which αHis20, αTyr24, αTyr42, αHis45, ßSer44, ßThr84, and ßHis92 were verified in targeted mass spectrometry experiments. Similarly, exposure of human blood to ultraviolet radiation produced 4-hydroxybenzyl adducts at αHis20, αTyr24, αTyr42, αHis45, ßSer44, ßThr84, and ßSer89. Overall, our results reveal that 4-hydroxybenzyl adducts form at multiple nucleophilic sites of hemoglobin and that para-QM is the most likely source of these adducts in humans.


Subject(s)
Benzyl Compounds/chemistry , Hemoglobins/chemistry , Indolequinones/chemistry , Amino Acid Sequence , Amino Acids/chemistry , Humans , Models, Molecular
6.
Chem Res Toxicol ; 33(10): 2623-2636, 2020 10 19.
Article in English | MEDLINE | ID: mdl-32875789

ABSTRACT

Skin (contact) allergy, the most predominant form of immunotoxicity in humans, is caused by small electrophilic compounds (haptens) that modify endogenous proteins. Approximately 20% of the general population in the Western world is affected by contact allergy. Although the importance of the hapten-protein conjugates is well established in the initiation of the immunological reaction, not much progress has been made regarding identification of these conjugates in vivo or exploration of their potential as diagnostic tools. In this study, the human serum albumin (HSA) and human hemoglobin (Hb) adductome for three representative contact allergens with different chemical properties, 1-chloro-2,4-dinitrobenzene (DNCB), 1,2-epoxy-3-phenoxypropane (PGE), and 2-bromo-2-(bromomethyl)glutaronitrile (MDBGN), were studied. Plasma and red blood cell lysate were used as a source for HSA and Hb, respectively. The Direct Peptide Reactivity Assay was used to investigate adduct formation of MDBGN with nucleophilic moieties and revealed that MDGBN is converted to 2-methylenepentanedinitrile in the presence of sulfhydryl groups prior to adduct formation. Following incubation of HSA and Hb with haptens, an Orbitrap Q Exactive high-resolution mass spectrometer was used to perform an initial untargeted analysis to screen for adduct formation, followed by confirmation by targeted Parallel Reaction Monitoring analysis. Although a subset of adducted sites was confirmed by targeted analysis, only some of the adducted peptides showed an increase in the relative amount of the adducted peptide with an increased concentration of hapten. In total, seven adduct sites for HSA and eight for Hb were confirmed for DNCB and PGE. These sites are believed to be the most reactive. Further, three of the HSA sites (Cys34, Cys62, and Lys190) and six of the Hb sites (subunit α: Val1, His45, His72; subunit ß: Cys93, His97, and Cys112) were haptenated already at the lowest level of hapten to protein molar ratio (0.1:1), indicating that these sites are the most likely to be modified in vivo. To the best of our knowledge, this is the first time that the adductome of Hb has been studied in the context of contact allergens. Identification of the most reactive sites of abundant proteins, such as HSA and Hb, is the first step toward identification of contact allergy biomarkers that can be used for biomonitoring and to develop better diagnostic tools based on a blood sample.


Subject(s)
Allergens/chemistry , Hemoglobins/chemistry , Serum Albumin, Human/chemistry , Allergens/blood , Humans , Models, Molecular , Molecular Structure , Skin Tests
7.
Analyst ; 145(5): 1737-1748, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-31913371

ABSTRACT

Glycosylation influences the structure and functionality of glycoproteins, and is regulated by genetic and environmental factors. The types and abundance of glycans on glycoproteins can vary due to diseases such as cancer, inflammation, autoimmune and neurodegenerative disorders. Due to the crucial role glycans play in modulating protein function, glycosylation analysis could lead to the discovery of novel biomarkers and is of prime importance in controlling the quality of glycoprotein biopharmaceuticals. Here, we present a method for the identification and quantification of glycoforms directly on intact proteins, after immunoaffinity purification from biological fluids. The method was validated and applied to serum transferrin and the biopharmaceutical trastuzumab. The accuracy of the method, expressed as the relative error (RE), ranged from 2.1 (at high concentrations) to 7.9% (at low concentrations), and intra- and inter-day precision, expressed as relative standard deviation (RSD), was 3.2 and 8.2%, respectively. The sensitivity and linearity of the method were suitable for serum analysis and the LOQ was calculated to be 3.1 and 4.4 µg mL-1 for transferrin (TFN) and trastuzumab (TRA), respectively. Its application to transferrin from five healthy human serum samples yielded concentrations between 1.61 and 3.17 mg mL-1, which are in agreement with blood reference levels. In parallel, the structure of the identified glycans was determined by ion mobility spectrometry coupled with tandem mass spectrometry. No chromatographic separation was required and sample preparation was performed in a semi-automatic manner, facilitating the handling of up to 12 samples at a time. This method should be useful for clinical laboratories and for the quality control of large batches of biopharmaceuticals.


Subject(s)
Ion Mobility Spectrometry/methods , Polysaccharides/analysis , Tandem Mass Spectrometry/methods , Transferrin/analysis , Trastuzumab/blood , Glycosylation , Humans , Polysaccharides/chemistry , Polysaccharides/metabolism , Transferrin/chemistry , Transferrin/metabolism , Trastuzumab/chemistry , Trastuzumab/metabolism
8.
J Pharm Biomed Anal ; 145: 431-439, 2017 Oct 25.
Article in English | MEDLINE | ID: mdl-28734272

ABSTRACT

A method we previously developed has been applied to the determination of the glycosylation pattern of specific proteins in biological samples. Six proteins (alpha-1-antitrypsin, transferrin, haptoglobin, C1 inhibitor, alpha-1 acid glycoprotein, and immunoglobulin G) were studied in serum samples from five individuals and cerebrospinal fluid (CSF) samples from three individuals, to investigate the expected normal distribution of glycosylation patterns and to assess whether this methodology can be used to discriminate between samples from different individuals. For serum samples, the differences were shown to be small, while much larger differences were found for the CSF samples, with a greater number of glycoforms present. This can be linked to the occurrence of differential glycosylation in proteins expressed in the brain compared with proteins expressed elsewhere in the body. The developed method could distinguish differences in the glycosylation pattern of specific proteins in the individual samples, which was not reflected in the glycan content of total CSF. This is the first time that the glycoforms of several of these proteins have been investigated in CSF.


Subject(s)
Glycosylation , Haptoglobins , Humans , Polysaccharides , Transferrin , alpha 1-Antitrypsin
9.
J Pharm Biomed Anal ; 132: 125-132, 2017 Jan 05.
Article in English | MEDLINE | ID: mdl-27718394

ABSTRACT

Glycosylation is one of the most common and important post-translational modifications, influencing both the chemical and the biological properties of proteins. Studying the glycosylation of the entire protein population of a sample can be challenging because variations in the concentrations of certain proteins can enhance or obscure changes in glycosylation. Furthermore, alterations in the glycosylation pattern of individual proteins, exhibiting larger variability in disease states, have been suggested as biomarkers for different types of cancer, as well as inflammatory and neurodegenerative diseases. In this paper, we present a rapid and efficient method for glycosylation analysis of individual proteins focusing on changes in the degree of fucosylation or other alterations to the core structure of the glycans, such as the presence of bisecting N-acetylglucosamines and a modified degree of branching. Streptavidin-coated magnetic beads are used in combination with genetically engineered immunoaffinity binders, called VHH antibody fragments. A major advantage of the VHHs is that they are nonglycosylated; thus, enzymatic release of glycans from the targeted protein can be performed directly on the beads. After deglycosylation, the glycans are analyzed by MALDI-TOF-MS. The developed method was evaluated concerning its specificity, and thereafter implemented for studying the glycosylation pattern of two different proteins, alpha-1-antitrypsin and transferrin, in human serum and cerebrospinal fluid. To our knowledge, this is the first example of a protein array-type experiment that employs bead-based immunoaffinity purification in combination with mass spectrometry analysis for fast and efficient glycan analysis of individual proteins in biological fluid.


Subject(s)
Polysaccharides/chemistry , Proteins/chemistry , Streptavidin/chemistry , Automation , Carbon/chemistry , Electrophoresis, Capillary , Genetic Engineering , Glycosylation , Humans , Immunoglobulin Fragments/chemistry , Magnetics , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/chemistry , Porosity , Protein Binding , Reproducibility of Results , Sialic Acids/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Transferrin/cerebrospinal fluid , Transferrin/chemistry , alpha 1-Antitrypsin/blood , alpha 1-Antitrypsin/cerebrospinal fluid
SELECTION OF CITATIONS
SEARCH DETAIL
...