Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Agron Sustain Dev ; 44(1): 8, 2024.
Article in English | MEDLINE | ID: mdl-38282889

ABSTRACT

Matching crop varieties to their target use context and user preferences is a challenge faced by many plant breeding programs serving smallholder agriculture. Numerous participatory approaches proposed by CGIAR and other research teams over the last four decades have attempted to capture farmers' priorities/preferences and crop variety field performance in representative growing environments through experimental trials with higher external validity. Yet none have overcome the challenges of scalability, data validity and reliability, and difficulties in capturing socio-economic and environmental heterogeneity. Building on the strengths of these attempts, we developed a new data-generation approach, called triadic comparison of technology options (tricot). Tricot is a decentralized experimental approach supported by crowdsourced citizen science. In this article, we review the development, validation, and evolution of the tricot approach, through our own research results and reviewing the literature in which tricot approaches have been successfully applied. The first results indicated that tricot-aggregated farmer-led assessments contained information with adequate validity and that reliability could be achieved with a large sample. Costs were lower than current participatory approaches. Scaling the tricot approach into a large on-farm testing network successfully registered specific climatic effects of crop variety performance in representative growing environments. Tricot's recent application in plant breeding networks in relation to decision-making has (i) advanced plant breeding lines recognizing socio-economic heterogeneity, and (ii) identified consumers' preferences and market demands, generating alternative breeding design priorities. We review lessons learned from tricot applications that have enabled a large scaling effort, which should lead to stronger decision-making in crop improvement and increased use of improved varieties in smallholder agriculture.

2.
Virus Evol ; 9(2): vead053, 2023.
Article in English | MEDLINE | ID: mdl-37692897

ABSTRACT

Cassava Brown Streak Disease (CBSD), which is caused by cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV), represents one of the most devastating threats to cassava production in Africa, including in Rwanda where a dramatic epidemic in 2014 dropped cassava yield from 3.3 million to 900,000 tonnes (1). Studying viral genetic diversity at the genome level is essential in disease management, as it can provide valuable information on the origin and dynamics of epidemic events. To fill the current lack of genome-based diversity studies of UCBSV, we performed a nationwide survey of cassava ipomovirus genomic sequences in Rwanda by high-throughput sequencing (HTS) of pools of plants sampled from 130 cassava fields in thirteen cassava-producing districts, spanning seven agro-ecological zones with contrasting climatic conditions and different cassava cultivars. HTS allowed the assembly of a nearly complete consensus genome of UCBSV in twelve districts. The phylogenetic analysis revealed high homology between UCBSV genome sequences, with a maximum of 0.8 per cent divergence between genomes at the nucleotide level. An in-depth investigation based on Single Nucleotide Polymorphisms (SNPs) was conducted to explore the genome diversity beyond the consensus sequences. First, to ensure the validity of the result, a panel of SNPs was confirmed by independent reverse transcription polymerase chain reaction (RT-PCR) and Sanger sequencing. Furthermore, the combination of fixation index (FST) calculation and Principal Component Analysis (PCA) based on SNP patterns identified three different UCBSV haplotypes geographically clustered. The haplotype 2 (H2) was restricted to the central regions, where the NAROCAS 1 cultivar is predominantly farmed. RT-PCR and Sanger sequencing of individual NAROCAS1 plants confirmed their association with H2. Haplotype 1 was widely spread, with a 100 per cent occurrence in the Eastern region, while Haplotype 3 was only found in the Western region. These haplotypes' associations with specific cultivars or regions would need further confirmation. Our results prove that a much more complex picture of genetic diversity can be deciphered beyond the consensus sequences, with practical implications on virus epidemiology, evolution, and disease management. Our methodology proposes a high-resolution analysis of genome diversity beyond the consensus between and within samples. It can be used at various scales, from individual plants to pooled samples of virus-infected plants. Our findings also showed how subtle genetic differences could be informative on the potential impact of agricultural practices, as the presence and frequency of a virus haplotype could be correlated with the dissemination and adoption of improved cultivars.

3.
Outlook Agric ; 50(4): 441-454, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34866657

ABSTRACT

The overdependency on local cassava varieties and informal seed sources by farmers in Rwanda has contributed to the spread of cassava viral diseases. The use of improved planting materials made available through formal seed sources, that assure seed quality, is one way to prevent future disease outbreaks. In order to increase the availability of, and farmers access to, such materials there is increasing interest to develop seed business models. This study aims to understand seed sourcing practices of different farm typologies to inform the development of tailored seed business models. A total of 390 farmers were interviewed and the collected data was analyzed into clusters, resulting in seven farm typologies. Seed sourcing strategies, seed replacement dynamics and purchasing behavior of these typologies were explored via a seed tracing study. We find that more commercial oriented farmers have better access to formal seed sources. Nevertheless, the majority of farmers in all typologies accessed new varieties and quality cassava seed via informal channels. At both formal and informal sources, cash investments in seed were mainly made by the categories of better-off farmers, and were one-time investments to acquire a new variety. Based on farmers current seed sourcing practices, clarifications on the differences between farmers and their willingness-to-pay, the roles of seed degeneration, cost-benefit analysis, value propositions and profit formulas seem important requirements for the further development of viable cassava seed business models. We conclude that tailoring seed business models can have a high potential as it acknowledges differences among farmers, but that careful coordination is needed to ensure that one approach or intervention does not contrast with and/or undermine the others.

4.
J Sci Food Agric ; 98(8): 3190-3197, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29230819

ABSTRACT

BACKGROUND: The early generation selection of cassava quantitative and qualitative traits saves breeding resources as it can shorten breeding schemes. Inheritance analysis provides important breeding information for developing new improved varieties. This study aimed at developing an F1 segregating cassava population and determining mode of gene action of pulp colour and selected traits at early generation selection (F1 seedling and clones). RESULTS: The 15 families exhibited significant (P < 0.05) phenotypic variation between offspring. The general combining ability (GCA) was significant for all traits except cassava brown streak disease on leaves, whereas specific combining ability (SCA) was significant for all evaluated traits. The Garukansubire and Gitamisi genotypes were the best general combiners for improving fresh storage root yield, while G1 and G2 were the best general combiners for improved carotenoid (yellow/orange pulp colour) and delayed physiological postharvest deterioration. The pulp colour had the highest GCA/SCA ratio and percent sum of squares due to GCA. CONCLUSION: The 15 F1 families exhibited essential genetic diversity for cassava improvement. The expression of most cassava traits was controlled by both additive and non-additive gene action. The study elucidated the role of dominance effects over the additive effects for the evaluated traits. However, the pulp colour was predominantly controlled by additive gene action. This implies the possibility of improving cassava through conventional breeding using recurrent selection for most traits. © 2017 Society of Chemical Industry.


Subject(s)
Carotenoids/analysis , Manihot/genetics , Breeding , Carotenoids/metabolism , Color , Genetic Variation , Genotype , Manihot/chemistry , Manihot/metabolism , Plant Roots/chemistry , Plant Roots/genetics , Plant Roots/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...