Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Virus Evol ; 9(1): vead030, 2023.
Article in English | MEDLINE | ID: mdl-37305707

ABSTRACT

G3 rotaviruses rank among the most common rotavirus strains worldwide in humans and animals. However, despite a robust long-term rotavirus surveillance system from 1997 at Queen Elizabeth Central Hospital in Blantyre, Malawi, these strains were only detected from 1997 to 1999 and then disappeared and re-emerged in 2017, 5 years after the introduction of the Rotarix rotavirus vaccine. Here, we analysed representative twenty-seven whole genome sequences (G3P[4], n = 20; G3P[6], n = 1; and G3P[8], n = 6) randomly selected each month between November 2017 and August 2019 to understand how G3 strains re-emerged in Malawi. We found four genotype constellations that were associated with the emergent G3 strains and co-circulated in Malawi post-Rotarix vaccine introduction: G3P[4] and G3P[6] strains with the DS-1-like genetic backbone genes (G3-P[4]-I2-R2-C2-M2-A2-N2-T2-E2-H2 and G3-P[6]-I2-R2-C2-M2-A2-N2-T2-E2-H2), G3P[8] strains with the Wa-like genetic backbone genes (G3-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1), and reassortant G3P[4] strains consisting of the DS-1-like genetic backbone genes and a Wa-like NSP2 (N1) gene (G3-P[4]-I2-R2-C2-M2-A2-N1-T2-E2-H2). Time-resolved phylogenetic trees demonstrated that the most recent common ancestor for each ribonucleic acid (RNA) segment of the emergent G3 strains was between 1996 and 2012, possibly through introductions from outside the country due to the limited genetic similarity with G3 strains which circulated before their disappearance in the late 1990s. Further genomic analysis revealed that the reassortant DS-1-like G3P[4] strains acquired a Wa-like NSP2 genome segment (N1 genotype) through intergenogroup reassortment; an artiodactyl-like VP3 through intergenogroup interspecies reassortment; and VP6, NSP1, and NSP4 segments through intragenogroup reassortment likely before importation into Malawi. Additionally, the emergent G3 strains contain amino acid substitutions within the antigenic regions of the VP4 proteins which could potentially impact the binding of rotavirus vaccine-induced antibodies. Altogether, our findings show that multiple strains with either Wa-like or DS-1-like genotype constellations have driven the re-emergence of G3 strains. The findings also highlight the role of human mobility and genome reassortment events in the cross-border dissemination and evolution of rotavirus strains in Malawi necessitating the need for long-term genomic surveillance of rotavirus in high disease-burden settings to inform disease prevention and control.

2.
J Med Virol ; 91(5): 738-743, 2019 05.
Article in English | MEDLINE | ID: mdl-30570784

ABSTRACT

Norovirus is a common cause of acute gastroenteritis (AGE) among children in developing countries. Limited data on the prevalence and genetic variability of norovirus are available in Cameroon, where early childhood mortality due to AGE is common. We tested 902 fecal specimens from children younger than 5 years of age hospitalized with AGE between January 2010 and December 2013. Overall, 76 (8.4%) samples tested positive for norovirus, of which 83% (63/76) were among children below 12 months old. Most of the noroviruses detected were in children infected between July and December of each year. All norovirus-positive specimens were genotyped, with 80% (61/76) being GII.4 (three variants detected). Genotypes GI.2, GI.6, GII.1, GII.2, GII.3, GII.6, GII.16, GII.17, and GII.21 were also detected. Interestingly, GII.4 Sydney and GII.17 Kawasaki viruses were found as early as 2010, years before their emergence globally. This study suggests norovirus is a significant cause of moderate to severe gastroenteritis among young children in Cameroon. The results are important to highlight appropriate prevention and control strategies for reducing the burden of norovirus disease.


Subject(s)
Caliciviridae Infections/epidemiology , Caliciviridae Infections/virology , Gastroenteritis/epidemiology , Gastroenteritis/virology , Genotype , Norovirus/classification , Norovirus/isolation & purification , Cameroon/epidemiology , Child, Preschool , Feces/virology , Female , Humans , Infant , Infant, Newborn , Male , Molecular Epidemiology , Norovirus/genetics , Prevalence , Seasons
3.
J Med Virol ; 85(8): 1485-90, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23765785

ABSTRACT

In this study the emergence of rotavirus A genotype G12 in children <5 years of age is reported from Cameroon during 2010/2011. A total of 135 human stool samples were P and G genotyped by reverse transcriptase PCR. Six different rotavirus VP7 genotypes were detected, including G1, G2, G3, G8, G9, and G12 in combinations with P[4], P[6] and P[8] VP4 genotypes. Genotype G12 predominated in combination with P[8] (54.1%) and P[6] (10.4%) genotypes followed by G1P[6] (8.2%), G3P[6] (6.7%), G2P[4] (5.9%), G8P[6] (3.7%), G2P[6] (0.7%), G3P[8] (0.7%), and G9P[8] (0.7%). Genotype P[6] strains in combination with various G-types represented a substantial proportion (N=44, 32.6%) of the genotyped strains. Partially typed strains included G12P[NT] (2.2%); G3P[NT] (0.7%); G(NT)P[6] (1.5%); and G(NT)P[8] (0.7%). Mixed infections were found in five specimens (3.7%) in several combinations including G1+ G12P[6], G2+ G3P[6] + P[8], G3+ G8P[6], G3 + G12P[6] + P[8], and G12P[6] +P[8]. The approximately 10% relative frequency of G12P[6] strains detected in this study suggests that this strain is emerging in Cameroon and should be monitored carefully as rotavirus vaccine is implemented in this country, as it shares neither G- nor P-type specificity with strains in the RotaTeq® and Rotarix® vaccines. These findings are consistent with other recent reports of the global spread and increasing epidemiologic importance of G12 and P[6] strains.


Subject(s)
Rotavirus Infections/epidemiology , Rotavirus Infections/virology , Rotavirus/classification , Rotavirus/genetics , Cameroon/epidemiology , Child, Preschool , Coinfection/epidemiology , Coinfection/virology , Feces/virology , Genotype , Humans , Infant , Molecular Epidemiology , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , Rotavirus/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...