Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Antioxidants (Basel) ; 12(3)2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36978830

ABSTRACT

Although the precise mechanisms for neurodegeneration in Parkinson's disease (PD) are unknown, evidence suggests that neuroinflammation is a critical factor in the pathogenic process. Here, we sought to determine whether the voltage-gated proton channel, Hv1 (HVCN1), which is expressed in microglia and regulates NADPH oxidase, is associated with dopaminergic neurodegeneration. We utilized data mining to evaluate the mRNA expression of HVCN1 in the brains of PD patients and controls and uncovered increased expression of the gene encoding Hv1, HVCN1, in the brains of PD patients compared to controls, specifically in male PD patients. In an acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 4 × 16 mg/kg) mouse model of PD, Hvcn1 gene expression was increased 2-fold in the striatum. MPTP administration to wild-type (WT) mice resulted in a ~65% loss of tyrosine hydroxylase positive neurons (TH+) in the substantia nigra (SN), while a ~39% loss was observed in Hv1 knockout (KO) mice. Comparable neuroprotective effects of Hv1 deficiency were found in a repeated-dose LPS model. Neuroprotection was associated with decreased pro-inflammatory cytokine levels and pro-oxidant factors in both neurotoxicant animal models. These in vivo results were confirmed in primary microglial cultures, with LPS treatment increasing Hvcn1 mRNA levels and Hv1 KO microglia failing to exhibit the LPS-mediated inflammatory response. Conditioned media from Hv1 KO microglia treated with LPS resulted in an attenuated loss of cultured dopamine neuron cell viability compared to WT microglia. Taken together, these data suggest that Hv1 is upregulated and mediates microglial pro-inflammatory cytokine production in parkinsonian models and therefore represents a novel target for neuroprotection.

2.
Front Genome Ed ; 4: 781531, 2022.
Article in English | MEDLINE | ID: mdl-35199100

ABSTRACT

Respiratory system damage is the primary cause of mortality in individuals who are exposed to vesicating agents including sulfur mustard (SM). Despite these devastating health complications, there are no fielded therapeutics that are specific for such injuries. Previous studies reported that SM inhalation depleted the tracheobronchial airway epithelial stem cell (TSC) pool and supported the hypothesis, TSC replacement will restore airway epithelial integrity and improve health outcomes for SM-exposed individuals. TSC express Major Histocompatibility Complex (MHC-I) transplantation antigens which increases the chance that allogeneic TSC will be rejected by the patient's immune system. However, previous studies reported that Beta-2 microglobulin (B2M) knockout cells lacked cell surface MHC-I and suggested that B2M knockout TSC would be tolerated as an allogeneic graft. This study used a Cas9 ribonucleoprotein (RNP) to generate B2M-knockout TSC, which are termed Universal Donor Stem Cells (UDSC). Whole genome sequencing identified few off-target modifications and demonstrated the specificity of the RNP approach. Functional assays demonstrated that UDSC retained their ability to self-renew and undergo multilineage differentiation. A preclinical model of SM inhalation was used to test UDSC efficacy and identify any treatment-associated adverse events. Adult male Sprague-Dawley rats were administered an inhaled dose of 0.8 mg/kg SM vapor which is the inhaled LD50 on day 28 post-challenge. On recovery day 2, vehicle or allogeneic Fisher rat UDSC were delivered intravenously (n = 30/group). Clinical parameters were recorded daily, and planned euthanasia occurred on post-challenge days 7, 14, and 28. The vehicle and UDSC treatment groups exhibited similar outcomes including survival and a lack of adverse events. These studies establish a baseline which can be used to further develop UDSC as a treatment for SM-induced airway disease.

3.
Mol Neurobiol ; 57(7): 2920-2933, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32436108

ABSTRACT

Parkinson's disease (PD) is a progressive neurodegenerative disease highlighted by a marked loss of dopaminergic cell loss and motor disturbances. Currently, there are no drugs that slow the progression of the disease. A myriad of factors have been implicated in the pathogenesis and progression of PD including neuroinflammation. Although anti-inflammatory agents are being evaluated as potential disease-modifying therapies for PD, none has proven effective to date, suggesting that new and novel targets are needed. Glycoprotein nonmetastatic melanoma protein B (GPNMB) is a transmembrane glycoprotein that has recently been shown to reduce inflammation in astrocytes and to be increased in post-mortem PD brain samples. Here we show that transgenic overexpression of GPNMB protects against dopaminergic neurodegeneration in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropridine mouse model of Parkinson's disease. Furthermore, GPNMB overexpression reduces gliosis and prevented microglial morphological changes following MPTP treatment compared with wild-type MPTP-treated mice. Additionally, recombinant GPNMB attenuates LPS-induced inflammation in primary mouse microglia. These results suggest a neuroprotective and anti-inflammatory role for GPNMB and warrant further investigation for GPNMB as a novel therapy for PD.


Subject(s)
Corpus Striatum/metabolism , Dopaminergic Neurons/metabolism , Eye Proteins/genetics , MPTP Poisoning/genetics , Membrane Glycoproteins/genetics , Microglia/metabolism , Animals , Corpus Striatum/pathology , Dopaminergic Neurons/pathology , Eye Proteins/metabolism , Inflammation/chemically induced , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Lipopolysaccharides , MPTP Poisoning/metabolism , MPTP Poisoning/pathology , Male , Membrane Glycoproteins/metabolism , Mice , Mice, Transgenic , Microglia/pathology
4.
FASEB J ; 34(1): 1679-1694, 2020 01.
Article in English | MEDLINE | ID: mdl-31914683

ABSTRACT

Increased pro-inflammatory cytokine levels and proliferation of activated microglia have been found in Parkinson's disease (PD) patients and animal models of PD, suggesting that targeting of the microglial inflammatory response may result in neuroprotection in PD. Microglial proliferation is regulated by many factors, but colony stimulating factor-1 receptor (CSF1R) has emerged as a primary factor. Using data mining techniques on existing microarray data, we found that mRNA expression of the CSF1R ligand, CSF-1, is increased in the brain of PD patients compared to controls. In two different neurotoxic mouse models of PD, acute MPTP and sub-chronic LPS treatment, mRNA and protein levels of CSF1R and CSF-1 were significantly increased. Treatment with the CSF1R inhibitor GW2580 significantly attenuated MPTP-induced CSF1R activation and Iba1-positive cell proliferation, without a reduction of the basal Iba1-positive population in the substantia nigra. GW2580 treatment also significantly decreased mRNA levels of pro-inflammatory factors, without alteration of anti-inflammatory mediators, and significantly attenuated the MPTP-induced loss of dopamine neurons and motor behavioral deficits. Importantly, these effects were observed in the absence of overt microglial depletion, suggesting that targeting CSF1R signaling may be a viable neuroprotective strategy in PD that disrupts pro-inflammatory signaling, but maintains the beneficial effects of microglia.


Subject(s)
Anisoles/pharmacology , Anti-Inflammatory Agents/pharmacology , Cell Proliferation/drug effects , Dopaminergic Neurons/drug effects , Microglia/drug effects , Neuroprotective Agents/pharmacology , Pyrimidines/pharmacology , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Animals , Cytokines/metabolism , Disease Models, Animal , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Humans , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Microglia/metabolism , Microglia/pathology , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Parkinson Disease/pathology , Signal Transduction/drug effects , Substantia Nigra/drug effects , Substantia Nigra/metabolism , Substantia Nigra/pathology
5.
Sci Signal ; 12(572)2019 03 12.
Article in English | MEDLINE | ID: mdl-30862700

ABSTRACT

The aggregation of α-synuclein (αSyn) is considered a key pathophysiological feature of certain neurodegenerative disorders, collectively termed synucleinopathies. Given that a prion-like, cell-to-cell transfer of misfolded αSyn has been recognized in the spreading of αSyn pathology in synucleinopathies, we investigated the biological mechanisms underlying the propagation of the disease with respect to environmental neurotoxic stress. Considering the potential role of the divalent metal manganese (Mn2+) in protein aggregation, we characterized its effect on αSyn misfolding and transmission in experimental models of Parkinson's disease. In cultured dopaminergic neuronal cells stably expressing wild-type human αSyn, misfolded αSyn was secreted through exosomes into the extracellular medium upon Mn2+ exposure. These exosomes were endocytosed through caveolae into primary microglial cells, thereby mounting neuroinflammatory responses. Furthermore, Mn2+-elicited exosomes exerted a neurotoxic effect in a human dopaminergic neuronal model (LUHMES cells). Moreover, bimolecular fluorescence complementation (BiFC) analysis revealed that Mn2+ accelerated the cell-to-cell transmission of αSyn, resulting in dopaminergic neurotoxicity in a mouse model of Mn2+ exposure. Welders exposed to Mn2+ had increased misfolded αSyn content in their serum exosomes. Stereotaxically delivering αSyn-containing exosomes, isolated from Mn2+-treated αSyn-expressing cells, into the striatum initiated Parkinsonian-like pathological features in mice. Together, these results indicate that Mn2+ exposure promotes αSyn secretion in exosomal vesicles, which subsequently evokes proinflammatory and neurodegenerative responses in both cell culture and animal models.


Subject(s)
Corpus Striatum/metabolism , Dopaminergic Neurons/metabolism , Exosomes/metabolism , Manganese/toxicity , Parkinson Disease, Secondary/metabolism , Protein Aggregation, Pathological/metabolism , alpha-Synuclein/metabolism , Animals , Cell Line , Disease Models, Animal , Dopaminergic Neurons/pathology , Exosomes/pathology , Manganese/pharmacology , Mice , Parkinson Disease, Secondary/chemically induced , Parkinson Disease, Secondary/pathology , Prions/metabolism , Protein Aggregation, Pathological/chemically induced , Protein Aggregation, Pathological/pathology
6.
J Neuroinflammation ; 15(1): 73, 2018 Mar 08.
Article in English | MEDLINE | ID: mdl-29519253

ABSTRACT

BACKGROUND: Neuroinflammation is one of the hallmarks of neurodegenerative diseases, such as Parkinson's disease (PD). Activation of glial cells, including microglia and astrocytes, is a characteristic of the inflammatory response. Glycoprotein non-metastatic melanoma protein B (GPNMB) is a transmembrane glycoprotein that releases a soluble signaling peptide when cleaved by ADAM10 or other extracellular proteases. GPNMB has demonstrated a neuroprotective role in animal models of ALS and ischemia. However, the mechanism of this protection has not been well established. CD44 is a receptor expressed on astrocytes that can bind GPNMB, and CD44 activation has been demonstrated to reduce NFκB activation and subsequent inflammatory responses in macrophages. GPNMB signaling has not been investigated in models of PD or specifically in astrocytes. More recently, genetic studies have linked polymorphisms in GPNMB with risk for PD. Therefore, it is important to understand the role this signaling protein plays in PD. METHODS: We used data mining techniques to evaluate mRNA expression of GPNMB and its receptor CD44 in the substantia nigra of PD and control brains. Immunofluorescence and qPCR techniques were used to assess GPNMB and CD44 levels in mice treated with MPTP. In vitro experiments utilized the immortalized mouse astrocyte cell line IMA2.1 and purified primary mouse astrocytes. The effects of recombinant GPNMB on cytokine-induced astrocyte activation was determined by qPCR, immunofluorescence, and measurement of nitric oxide and reactive oxygen production. RESULTS: Increased GPNMB and CD44 expression was observed in the substantia nigra of human PD brains and in GFAP-positive astrocytes in an animal model of PD. GPNMB treatment attenuated cytokine-induced levels of inducible nitric oxide synthase, nitric oxide, reactive oxygen species, and the inflammatory cytokine IL-6 in an astrocyte cell line and primary mouse astrocytes. Using primary mouse astrocytes from CD44 knockout mice, we found that the anti-inflammatory effects of GPNMB are CD44-mediated. CONCLUSIONS: These results demonstrate that GPNMB may exert its neuroprotective effect through reducing astrocyte-mediated neuroinflammation in a CD44-dependent manner, providing novel mechanistic insight into the neuroprotective properties of GPNMB.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Astrocytes/drug effects , Hyaluronan Receptors/metabolism , Inflammation/drug therapy , Membrane Glycoproteins/therapeutic use , Parkinson Disease/pathology , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Analysis of Variance , Animals , Case-Control Studies , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Databases, Chemical , Female , Glial Fibrillary Acidic Protein/metabolism , Humans , Inflammation/etiology , Male , Mice , Neurotoxins/toxicity , Nitric Oxide/metabolism , Parkinson Disease/complications , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects
7.
Mol Neurobiol ; 55(6): 5167-5176, 2018 Jun.
Article in English | MEDLINE | ID: mdl-28856541

ABSTRACT

Neurodegeneration is characterized by severe neuronal loss leading to the cognitive and physical impairments that define various neurodegenerative diseases. Neuroinflammation is one hallmark of neurodegenerative diseases and can ultimately contribute to disease progression. Increased inflammatory cytokines, such as interleukin-6 (IL-6), interleukin-1ß (IL-1 ß), and tumor necrosis factor-α (TNF-α) are associated with Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). Unfortunately, current therapeutic options lack ability to stop or effectively slow progression of these diseases and are primarily aimed at alleviating symptoms. Thus, it is crucial to discover novel treatment candidates for neurodegenerative diseases. Glycoprotein nonmetastatic melanoma protein B (GPNMB) is a type-I transmembrane glycoprotein first identified in a melanoma cell line. GPNMB augments bone mineral deposition by stimulating osteoblast differentiation. Aside from its anabolic function in the bone, emerging evidence suggests that GPNMB has anti-inflammatory and reparative functions. GPNMB has also been demonstrated to be neuroprotective in an animal model of ALS, cerebral ischemia, and other disease models. Given these discoveries, GPNMB should be investigated as a potential therapeutic option for multiple neurodegenerative diseases.


Subject(s)
Membrane Glycoproteins/metabolism , Neurodegenerative Diseases/metabolism , Animals , Humans , Immune System/metabolism , Membrane Glycoproteins/chemistry , Nerve Degeneration/pathology , Neurodegenerative Diseases/therapy
8.
Nat Commun ; 7: 12932, 2016 10 05.
Article in English | MEDLINE | ID: mdl-27703142

ABSTRACT

Prokineticin-2 (PK2), a recently discovered secreted protein, regulates important physiological functions including olfactory biogenesis and circadian rhythms in the CNS. Interestingly, although PK2 expression is low in the nigral system, its receptors are constitutively expressed on nigrostriatal neurons. Herein, we demonstrate that PK2 expression is highly induced in nigral dopaminergic neurons during early stages of degeneration in multiple models of Parkinson's disease (PD), including PK2 reporter mice and MitoPark mice. Functional studies demonstrate that PK2 promotes mitochondrial biogenesis and activates ERK and Akt survival signalling pathways, thereby driving neuroprotection. Importantly, PK2 overexpression is protective whereas PK2 receptor antagonism exacerbates dopaminergic degeneration in experimental PD. Furthermore, PK2 expression increased in surviving nigral dopaminergic neurons from PD brains, indicating that PK2 upregulation is clinically relevant to human PD. Collectively, our results identify a paradigm for compensatory neuroprotective PK2 signalling in nigral dopaminergic neurons that could have important therapeutic implications for PD.


Subject(s)
Central Nervous System/cytology , Dopaminergic Neurons/metabolism , Gastrointestinal Hormones/metabolism , Neuropeptides/metabolism , Animals , Behavior, Animal , Cell Death , Extracellular Signal-Regulated MAP Kinases/metabolism , Gastrointestinal Hormones/genetics , Gene Expression Profiling , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neuropeptides/genetics , Parkinson Disease/genetics , Parkinson Disease/metabolism , Polymerase Chain Reaction , Recombinant Proteins/metabolism , Signal Transduction , Substantia Nigra/cytology
9.
Mol Brain ; 9(1): 78, 2016 08 18.
Article in English | MEDLINE | ID: mdl-27535380

ABSTRACT

The temporal organization of activity/rest or sleep/wake rhythms for mammals is regulated by the interaction of light/dark cycle and circadian clocks. The neural and molecular mechanisms that confine the active phase to either day or night period for the diurnal and the nocturnal mammals are unclear. Here we report that prokineticin 2, previously shown as a circadian clock output molecule, is expressed in the intrinsically photosensitive retinal ganglion cells, and the expression of prokineticin 2 in the intrinsically photosensitive retinal ganglion cells is oscillatory in a clock-dependent manner. We further show that the prokineticin 2 signaling is required for the activity and arousal suppression by light in the mouse. Between the nocturnal mouse and the diurnal monkey, a signaling receptor for prokineticin 2 is differentially expressed in the retinorecipient suprachiasmatic nucleus and the superior colliculus, brain projection targets of the intrinsically photosensitive retinal ganglion cells. Blockade with a selective antagonist reveals the respectively inhibitory and stimulatory effect of prokineticin 2 signaling on the arousal levels for the nocturnal mouse and the diurnal monkey. Thus, the mammalian diurnality or nocturnality is likely determined by the differential signaling of prokineticin 2 from the intrinsically photosensitive retinal ganglion cells onto their retinorecipient brain targets.


Subject(s)
Arousal , Circadian Rhythm , Gastrointestinal Hormones/metabolism , Neuropeptides/metabolism , Signal Transduction , Animals , Arousal/radiation effects , Biological Clocks/radiation effects , Circadian Rhythm/radiation effects , Haplorhini , Light , Mice , Models, Biological , Motor Activity/radiation effects , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/radiation effects , Rod Opsins/metabolism , Signal Transduction/radiation effects , Time Factors
10.
J Neuroimmune Pharmacol ; 11(2): 259-78, 2016 06.
Article in English | MEDLINE | ID: mdl-26838361

ABSTRACT

Mitochondrial dysfunction, oxidative stress and neuroinflammation have been implicated as key mediators contributing to the progressive degeneration of dopaminergic neurons in Parkinson's disease (PD). Currently, we lack a pharmacological agent that can intervene in all key pathological mechanisms, which would offer better neuroprotective efficacy than a compound that targets a single degenerative mechanism. Herein, we investigated whether mito-apocynin (Mito-Apo), a newly-synthesized and orally available derivative of apocynin that targets mitochondria, protects against oxidative damage, glial-mediated inflammation and nigrostriatal neurodegeneration in cellular and animal models of PD. Mito-Apo treatment in primary mesencephalic cultures significantly attenuated the 1-methyl-4-phenylpyridinium (MPP(+))-induced loss of tyrosine hydroxylase (TH)-positive neuronal cells and neurites. Mito-Apo also diminished MPP(+)-induced increases in glial cell activation and inducible nitric oxide synthase (iNOS) expression. Additionally, Mito-Apo decreased nitrotyrosine (3-NT) and 4-hydroxynonenol (4-HNE) levels in primary mesencephalic cultures. Importantly, we assessed the neuroprotective property of Mito-Apo in the MPTP mouse model of PD, wherein it restored the behavioral performance of MPTP-treated mice. Immunohistological analysis of nigral dopaminergic neurons and monoamine measurement further confirmed the neuroprotective effect of Mito-Apo against MPTP-induced nigrostriatal dopaminergic neuronal loss. Mito-Apo showed excellent brain bioavailability and also markedly attenuated MPTP-induced oxidative markers in the substantia nigra (SN). Furthermore, oral administration of Mito-Apo significantly suppressed MPTP-induced glial cell activation, upregulation of proinflammatory cytokines, iNOS and gp91phox in IBA1-positive cells of SN. Collectively, these results demonstrate that the novel mitochondria-targeted compound Mito-Apo exhibits profound neuroprotective effects in cellular and pre-clinical animal models of PD by attenuating oxidative damage and neuroinflammatory processes.


Subject(s)
Acetophenones/therapeutic use , Antioxidants/therapeutic use , Dopaminergic Neurons/drug effects , Inflammation Mediators/antagonists & inhibitors , Mitochondria/drug effects , Parkinsonian Disorders/prevention & control , Acetophenones/chemistry , Acetophenones/pharmacology , Animals , Animals, Newborn , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Antioxidants/chemistry , Antioxidants/pharmacology , Cells, Cultured , Disease Models, Animal , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Inflammation/metabolism , Inflammation/pathology , Inflammation/prevention & control , Inflammation Mediators/metabolism , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Mitochondria/pathology , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/pathology , Treatment Outcome
11.
J Neurosci Methods ; 194(2): 287-96, 2011 Jan 15.
Article in English | MEDLINE | ID: mdl-21074565

ABSTRACT

Microglial cells play a dynamic role in the brain beyond their established function of immune surveillance. Activated microglia play key roles in neural development, neuroinflammation, neural repair and neurotoxicity. They are particularly important in several neurodegenerative diseases in which sustained microglial activation contributes to the progression of neurodegenerative processes. Consequently, understanding microglial function in CNS health and disease has become an area of active research in recent years. However, a significant obstacle to progress in this field has been the inherent difficulties in obtaining large amounts of primary microglial cells to routinely perform mechanistic studies and characterize signaling pathways regulating the dynamics of microglial activation. Herein, we describe a novel column-free magnetic separation protocol for high-yield isolation of primary microglia from mouse postnatal mixed glial cultures. The procedure is based on optimized culture conditions that enable high microglial cell densities in confluent mixed glial cultures followed by highly efficient recovery of pure microglia by magnetic separation. The novel column-free magnetic separation system utilizes tetrameric antibody complexes (TAC) with dual specificity for CD11b-PE labeled microglia and dextran magnetic nanoparticles. An FcR blocker (anti-CD16/32) is added to enhance the purity of the microglial separation by preventing non-specific labeling of other cell types. This procedure yields on average >3×106 microglial cells per mouse pup, with a remarkable purity of 97% and recovery of around 87% of microglia from the mixed glial population. Importantly, the microglia obtained by this method are fully functional and respond like cells obtained by conventional isolation techniques.


Subject(s)
Cell Separation/methods , Magnetics/methods , Microglia/physiology , Analysis of Variance , Animals , Animals, Newborn , Brain/cytology , CD11b Antigen/metabolism , Calcium-Binding Proteins/metabolism , Cell Separation/instrumentation , Cells, Cultured , Cytokines/metabolism , Flow Cytometry/methods , Gene Expression Regulation/drug effects , Glial Fibrillary Acidic Protein/metabolism , Lipopolysaccharides/pharmacology , Magnetics/instrumentation , Mice , Mice, Inbred C57BL , Microfilament Proteins , Microglia/metabolism , Nitric Oxide/metabolism , Reactive Oxygen Species/metabolism , alpha-Synuclein/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...