Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Alzheimers Dement (Amst) ; 16(2): e12581, 2024.
Article in English | MEDLINE | ID: mdl-38617186

ABSTRACT

INTRODUCTION: Recent Alzheimer's disease (AD) clinical trials have used cerebrospinal fluid (CSF) biomarker levels for screening and enrollment. Preliminary evidence suggests that AD risk is related to impaired renal function. The impact of kidney function on commonly used AD biomarkers remains unknown. METHODS: Participants in studies conducted at the Goizueta Alzheimer's Disease Research Center (N = 973) had measurements of serum creatinine and CSF AD biomarkers. General linear models and individual data were used to assess the relationships between biomarkers and eGFR. RESULTS: Lower estimated glomerular filtration rate (eGFR) was associated with lower amyloid beta (Aß)42/tau ratio (p < 0.0001) and Aß42 (p = 0.002) and higher tau (p < 0.0001) and p-tau (p = 0.0002). The impact of eGFR on AD biomarker levels was more robust in individuals with cognitive impairment (all p-values were < 0.005). DISCUSSION: The association between eGFR and CSF AD biomarkers has a significant impact that varies by cognitive status. Future studies exploring this impact on the pathogenesis of AD and related biomarkers are needed. Highlights: There is a significant association between Alzheimer's disease (AD) cerebrospinal fluid (CSF) biomarkers and both estimated glomerular filtration rate (eGFR) and mild cognitive impairment (MCI).Kidney function influences CSF biomarker levels in individuals with normal cognitive function and those with MCI.The impact of kidney function on AD biomarker levels is more pronounced in individuals with cognitive impairment.The variation in CSF tau levels is independent of cardiovascular factors and is likely directly related to kidney function.Tau may have a possible role in both kidney and cognitive function.

2.
Bone Rep ; 18: 101655, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36659900

ABSTRACT

ADPKD is caused by pathogenic variants in PKD1 or PKD2, encoding polycystin-1 and -2 proteins. Polycystins are expressed in osteoblasts and chondrocytes in animal models, and loss of function is associated with low bone mineral density (BMD) and volume. However, it is unclear whether these variants impact bone strength in ADPKD patients. Here, we examined BMD in ADPKD after kidney transplantation (KTx). This retrospective observational study retrieved data from adult patients who received a KTx over the past 15 years. Patients with available dual-energy X-ray absorptiometry (DXA) of the hip and/or lumbar spine (LS) post-transplant were included. ADPKD patients (n = 340) were matched 1:1 by age (±2 years) at KTx and sex with non-diabetic non-ADPKD patients (n = 340). Patients with ADPKD had slightly higher BMD and T-scores at the right total hip (TH) as compared to non-ADPKD patients [BMD: 0.951 vs. 0.897, p < 0.001; T-score: -0.62 vs. -0.99, p < 0.001] and at left TH [BMD: 0.960 vs. 0.893, p < 0.001; T-score: -0.60 vs. -1.08, p < 0.001], respectively. Similar results were found at the right femoral neck (FN) between ADPKD and non-ADPKD [BMD: 0.887 vs. 0.848, p = 0.001; T-score: -1.20 vs. -1.41, p = 0.01] and at left FN [BMD: 0.885 vs. 0.840, p < 0.001; T-score: -1.16 vs. -1.46, p = 0.001]. At the LS level, ADPKD had a similar BMD and lower T-score compared to non-ADPKD [BMD: 1.120 vs. 1.126, p = 0.93; T-score: -0.66 vs. -0.23, p = 0.008]. After adjusting for preemptive KTx, ADPKD patients continued to have higher BMD T-scores in TH and FN. Our findings indicate that BMD by DXA is higher in patients with ADPKD compared to non-ADPKD patients after transplantation in sites where cortical but not trabecular bone is predominant. The clinical benefit of the preserved cortical bone BMD in patients with ADPKD needs to be explored in future studies.

3.
Kidney360 ; 3(3): 465-476, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35582184

ABSTRACT

Background: Autosomal dominant polycystic kidney disease (ADPKD) has phenotypic variability only partially explained by established biomarkers that do not readily assess pathologically important factors of inflammation and kidney fibrosis. We evaluated asymptomatic pyuria (AP), a surrogate marker of inflammation, as a biomarker for disease progression. Methods: We performed a retrospective cohort study of adult patients with ADPKD. Patients were divided into AP and no pyuria (NP) groups. We evaluated the effect of pyuria on kidney function and kidney volume. Longitudinal models evaluating kidney function and kidney volume rate of change with respect to incidences of AP were created. Results: There were 687 included patients (347 AP, 340 NP). The AP group had more women (65% versus 49%). Median ages at kidney failure were 86 and 80 years in the NP and AP groups (log rank, P=0.49), respectively, for patients in Mayo Imaging Class (MIC) 1A-1B as compared with 59 and 55 years for patients in MIC 1C-1D-1E (log rank, P=0.02), respectively. Compared with the NP group, the rate of kidney function (ml/min per 1.73 m2 per year) decline shifted significantly after detection of AP in the models, including all patients (-1.48; P<0.001), patients in MIC 1A-1B (-1.79; P<0.001), patients in MIC 1C-1D-1E (-1.18; P<0.001), and patients with PKD1 (-1.04; P<0.001). Models evaluating kidney volume rate of growth showed no change after incidence of AP as compared with the NP group. Conclusions: AP is associated with kidney failure and faster kidney function decline irrespective of the ADPKD gene, cystic burden, and cystic growth. These results support AP as an enriching prognostic biomarker for the rate of disease progression.


Subject(s)
Kidney Failure, Chronic , Polycystic Kidney, Autosomal Dominant , Pyuria , Adult , Biomarkers , Disease Progression , Female , Glomerular Filtration Rate , Humans , Inflammation/complications , Kidney Failure, Chronic/complications , Polycystic Kidney, Autosomal Dominant/complications , Prognosis , Pyuria/complications , Retrospective Studies
4.
Kidney Int Rep ; 6(3): 755-767, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33732990

ABSTRACT

INTRODUCTION: Cystic expansion damaging the parenchyma is thought to lead to end-stage kidney disease (ESKD) in autosomal dominant polycystic kidney disease (ADPKD). Here we characterized genotypic and phenotypic attributes of ADPKD at time of ESKD. METHODS: This is a retrospective cross-sectional study of patients with ADPKD with ESKD evaluated at Mayo Clinic with available abdominal computed tomography (CT) or magnetic resonance imaging (MRI). Kidney volumes were measured (total kidney volume adjusted for height [HtTKV]), Mayo Image Class (MIC) calculated, ADPKD genotype determined, and clinical and laboratory features obtained from medical records. RESULTS: Differences in HtTKV at ESKD were associated with patient age and sex; older patients and women had smaller HtTKV at ESKD. HtTKV at ESKD was observed to be 12.3% smaller with each decade of age (P < 0.01); but significant only in women (17.8%, P < 0.01; men 6.9%, P = 0.06). Patients with onset of ESKD at <47, 47-61, or >61 years had different characteristics, with a shift from youngest to oldest in male to female enrichment, MIC from 1D/1E to 1B/1C, likely fully penetrant PKD1 mutations from 95% to 42%, and presence of macrovascular disease from 8% to 40%. Macrovascular disease was associated with smaller kidneys in female patients. CONCLUSION: HtTKV at ESKD was smaller with advancing age in patients with ADPKD, particularly in women. These novel findings provide insight into possible underlying mechanisms leading to ESKD, which differ between younger and older individuals. Cystic growth is the predominant mechanism in younger patients with ESKD, whereas aging-related factors, including vascular disease, becomes potentially important as patients age.

SELECTION OF CITATIONS
SEARCH DETAIL
...