Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage Clin ; 28: 102400, 2020.
Article in English | MEDLINE | ID: mdl-32919366

ABSTRACT

OBJECTIVE: To identify a parsimonious set of markers that optimally predicts subsequent clinical progression from normal to mild cognitive impairment (MCI). METHODS: 250 clinically normal adults (mean age = 73.6 years, SD = 6.0) from the Harvard Aging Brain Study were assessed at baseline on a wide set of markers, including magnetic resonance imaging markers of gray matter thickness and volume, white matter lesions, fractional anisotropy, resting state functional connectivity, positron emission tomography markers of glucose metabolism and ß-amyloid (Aß) burden, and a measure of vascular risk. Participants were also tested annually on a battery of clinical and cognitive tests (median follow-up = 5.0 years, SD = 1.66). We applied least absolute shrinkage and selection operator (LASSO) Cox models to determine the minimum set of non-redundant markers that predicts subsequent clinical progression from normal to MCI, adjusting for age, sex, and education. RESULTS: 23 participants (9.2%) progressed to MCI over the study period (mean years of follow-up to diagnosis = 3.96, SD = 1.89). Progression was predicted by several brain markers, including reduced entorhinal thickness (hazard ratio, HR = 1.73), greater Aß burden (HR = 1.58), lower default network connectivity (HR = 1.42), and smaller hippocampal volume (HR = 1.30). When cognitive test scores were added to the model, the aforementioned neuroimaging markers remained significant and lower striatum volume as well as lower scores on baseline memory and processing speed tests additionally contributed to progression. CONCLUSION: Among a large set of brain, vascular and cognitive markers, a subset of markers independently predicted progression from normal to MCI. These markers may enhance risk stratification by identifying clinically normal individuals who are most likely to develop clinical symptoms and would likely benefit most from therapeutic intervention.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Aged , Amyloid beta-Peptides/metabolism , Brain/diagnostic imaging , Brain/metabolism , Cognitive Dysfunction/diagnostic imaging , Disease Progression , Humans , Magnetic Resonance Imaging , Neuropsychological Tests , Positron-Emission Tomography , Tomography, X-Ray Computed
2.
Cereb Cortex ; 29(3): 1251-1262, 2019 03 01.
Article in English | MEDLINE | ID: mdl-29425267

ABSTRACT

White matter degradation has been proposed as one possible explanation for age-related cognitive decline. In the present study, we examined 2 main questions: 1) Do diffusion characteristics predict longitudinal change in cognition independently or synergistically with amyloid status? 2) Are the effects of diffusion characteristics on longitudinal cognitive change tract-specific or global in nature? Cognitive domains of executive function, episodic memory, and processing speed were measured annually (mean follow-up = 3.93 ± 1.25 years). Diffusion tensor imaging and Pittsburgh Compound-B positron emission tomography were performed at baseline in 265 clinically normal older adults (aged 63-90). Tract-specific diffusion was measured as the mean fractional anisotropy (FA) for 9 major white matter tracts. Global diffusion was measured as the mean FA across the 9 white matter tracts. Linear mixed models demonstrated independent, rather than synergistic, effects of global FA and amyloid status on cognitive decline. After controlling for amyloid status, lower global FA was associated with worse longitudinal performance in episodic memory and processing speed, but not executive function. After accounting for global FA, none of the individual tracts predicted a significant change in cognitive performance. These findings suggest that global, rather than tract-specific, diffusion characteristics predict longitudinal cognitive decline independently of amyloid status.


Subject(s)
Amyloid beta-Peptides/metabolism , Brain/anatomy & histology , Brain/metabolism , Cognition/physiology , White Matter/anatomy & histology , White Matter/metabolism , Aged , Aged, 80 and over , Cross-Sectional Studies , Diffusion Tensor Imaging , Female , Humans , Longitudinal Studies , Male , Middle Aged , Positron-Emission Tomography
3.
Neuroimage Clin ; 19: 331-342, 2018.
Article in English | MEDLINE | ID: mdl-30013916

ABSTRACT

The fornix bundle is a major white matter pathway of the hippocampus. While volume of the hippocampus has been a primary imaging biomarker of Alzheimer's disease progression, recent research has suggested that the volume and microstructural characteristics of the fornix bundle connecting the hippocampus could add relevant information for diagnosing and staging Alzheimer's disease. Using a robust fornix bundle isolation technique in native diffusion space, this study investigated whether diffusion measurements of the fornix differed between normal older adults and Alzheimer's disease patients when controlling for volume measurements. Data were collected using high gradient multi-shell diffusion-weighted MRI from a Siemens CONNECTOM scanner in 23 Alzheimer's disease and 23 age- and sex-matched control older adults (age range = 53-92). These data were used to reconstruct a continuous fornix bundle in every participant's native diffusion space, from which tract-derived volumetric and diffusion metrics were extracted and compared between groups. Diffusion metrics included those from a tensor model and from a generalized q-sampling imaging model. Results showed no significant differences in tract-derived fornix volumes but did show altered diffusion metrics within tissue classified as the fornix in the Alzheimer's disease group. Comparisons to a manual tracing method indicated the same pattern of results and high correlations between the methods. These results suggest that in Alzheimer's disease, diffusion characteristics may provide more sensitive measures of fornix degeneration than do volume measures and may be a potential early marker for loss of medial temporal lobe connectivity.


Subject(s)
Alzheimer Disease/diagnostic imaging , Connectome , Diffusion Magnetic Resonance Imaging , Fornix, Brain/diagnostic imaging , White Matter/diagnostic imaging , Aged , Aged, 80 and over , Disease Progression , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...