Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Heredity (Edinb) ; 118(5): 413-423, 2017 May.
Article in English | MEDLINE | ID: mdl-27901510

ABSTRACT

Local adaptation is a common feature of plant and animal populations. Adaptive phenotypic traits are genetically differentiated along environmental gradients, but the genetic basis of such adaptation is still poorly known. Genetic association studies of local adaptation combine data over populations. Correcting for population structure in these studies can be problematic since both selection and neutral demographic events can create similar allele frequency differences between populations. Correcting for demography with traditional methods may lead to eliminating some true associations. We developed a new Bayesian approach for identifying the loci underlying an adaptive trait in a multipopulation situation in the presence of possible double confounding due to population stratification and adaptation. With this method we studied the genetic basis of timing of bud set, a surrogate trait for timing of yearly growth cessation that confers local adaptation to the populations of Scots pine (Pinus sylvestris). Population means of timing of bud set were highly correlated with latitude. Most effects at individual loci were small. Interestingly, we found genetic heterogeneity (that is, different sets of loci associated with the trait) between the northern and central European parts of the cline. We also found indications of stronger stabilizing selection toward the northern part of the range. The harsh northern conditions may impose greater selective pressure on timing of growth cessation, and the relative importance of different environmental cues used for tracking the seasons might differ depending on latitude of origin.


Subject(s)
Adaptation, Physiological/genetics , Genetics, Population/methods , Pinus sylvestris/genetics , Polymorphism, Single Nucleotide , Bayes Theorem , Europe , Flowers/physiology , Genotype , Models, Genetic , Phenotype , Pinus sylvestris/physiology
2.
Mol Ecol ; 21(22): 5530-45, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23058000

ABSTRACT

Climate is one of the most important drivers of local adaptation in forest tree species. Standing levels of genetic diversity and structure within and among natural populations of forest trees are determined by the interplay between climatic heterogeneity and the balance between selection and gene flow. To investigate this interplay, single nucleotide polymorphisms (SNPs) were genotyped in 24 to 37 populations from four subalpine conifers, Abies alba Mill., Larix decidua Mill., Pinus cembra L. and Pinus mugo Turra, across their natural ranges in the Italian Alps and Apennines. Patterns of population structure were apparent using a Bayesian clustering program, STRUCTURE, which identified three to five genetic groups per species. Geographical correlates with these patterns, however, were only apparent for P. cembra. Multivariate environmental variables [i.e. principal components (PCs)] were subsequently tested for association with SNPs using a Bayesian generalized linear mixed model. The majority of the SNPs, ranging from six in L. decidua to 18 in P. mugo, were associated with PC1, corresponding to winter precipitation and seasonal minimum temperature. In A. alba, four SNPs were associated with PC2, corresponding to the seasonal minimum temperature. Functional annotation of those genes with the orthologs in Arabidopsis revealed several genes involved in abiotic stress response. This study provides a detailed assessment of population structure and its association with environment and geography in four coniferous species in the Italian mountains.


Subject(s)
Abies/genetics , Environment , Genetic Variation , Larix/genetics , Pinus/genetics , Altitude , Bayes Theorem , Climate , DNA, Plant/genetics , Europe , Gene Flow , Genotype , Models, Genetic , Polymorphism, Single Nucleotide , Principal Component Analysis , Seasons , Sequence Analysis, DNA , Trees/genetics
3.
Heredity (Edinb) ; 101(1): 19-26, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18478029

ABSTRACT

Dissection of complex traits that influence fitness is not only a central topic in evolutionary research but can also assist breeding practices for economically important plant species, such as loblolly pine (Pinus taeda L). In this study, 46 single nucleotide polymorphisms (SNPs) from 41 disease and abiotic stress-inducible genes were tested for their genetic association with carbon isotope discrimination (CID), a time-integrated trait measure of stomatal conductance. A family-based approach to detect genotype/phenotype genetic association was developed for the first time in plants by applying the quantitative transmission disequilibrium test on an association population of 961 clones from 61 families (adopted from previous breeding programs) evaluated for phenotypic expression of CID at two sites. Two particularly promising candidates for their genetic effects on CID are: dhn-1, involved in stabilization of cell structures, and lp5-like, a glycine rich protein putatively related to cell wall reinforcement proteins, both of which were shown in previous studies to be water-deficit inducible. Moreover, association in lp5-like involves a nonsynonymous mutation in linkage disequilibrium with two other nonsynonymous polymorphisms that could, by acting together, enhance overall phenotypic effects. This study highlights the complexity of dissecting CID traits and provides insights for designing second-generation association studies based on candidate gene approaches in forest trees.


Subject(s)
Pinus taeda/genetics , Carbon Isotopes/metabolism , Disasters , Linkage Disequilibrium , Pinus taeda/physiology , Plant Diseases/genetics , Polymorphism, Single Nucleotide , Southeastern United States , Trees/genetics , Water/metabolism
4.
Theor Appl Genet ; 107(4): 667-78, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12827250

ABSTRACT

A genetic map of Pinus sylvestris was constructed using ESTP (expressed sequence tag polymorphism) markers and other gene-based markers, AFLP markers and microsatellites. Part of the ESTP markers (40) were developed and mapped earlier in Pinus taeda, and additional markers were generated based on P. sylvestris sequences or sequences from other pine species. The mapping in P. sylvestris was based on 94 F(1) progeny from a cross between plus-tree parents E635C and E1101. AFLP framework maps for the parent trees were first constructed. The ESTP and other gene sequence-based markers were added to the framework maps, as well as five published microsatellite loci. The separate maps were then integrated with the aid of AFLPs segregating in both trees (dominant segregation ratios 3:1) as well as gene markers and microsatellites segregating in both parent trees (segregation ratios 1:1:1:1 or 1:2:1). The integrated map consisted of 12 groups corresponding to the P. taeda linkage groups, and additionally three and six smaller groups for E1101 and E635C, respectively. The number of framework AFLP markers in the integrated map is altogether 194 and the number of gene markers 61. The total length of the integrated map was 1,314 cM. The set of markers developed for P. sylvestris was also added to existing maps of two P. taeda pedigrees. Starting with a mapped marker from one pedigree in the source species resulted in a mapped marker in a pedigree of the other species in more than 40% of the cases, with about equal success in both directions. The maps of the two species are largely colinear, even if the species have diverged more than 70 MYA. Most cases of different locations were probably due to problems in identifying the orthologous members of gene families. These data provide a first ESTP-containing map of P. sylvestris, which can also be used for comparing this species to additional species mapped with the same markers.


Subject(s)
Chromosome Mapping , Expressed Sequence Tags , Pinus sylvestris/genetics , Pinus taeda/genetics , Base Sequence , DNA Primers/genetics , DNA, Plant/genetics , Genetic Markers , Microsatellite Repeats , Polymerase Chain Reaction , Polymorphism, Genetic , Polymorphism, Single-Stranded Conformational , Species Specificity
5.
Theor Appl Genet ; 104(2-3): 214-222, 2002 Feb.
Article in English | MEDLINE | ID: mdl-12582689

ABSTRACT

Chemical wood property traits were analyzed for the presence of quantitative trait loci (QTLs) in a three-generation outbred pedigree of loblolly pine ( Pinus taeda L.). These traits were assayed using pyrolysis molecular beam mass spectrometry and include mass spectrum peak intensities associated with carbohydrates, alpha-cellulose and hemicellulose sugars, and lignin. Models for projection to latent structures (PLS) were used to also estimate the chemical composition of cell walls (i.e., alpha-cellulose, galactan and lignin) from mass spectrum data using multivariate regression. Both earlywood and latewood fractions from the fifth annual ring were analyzed for each trait. An interval mapping approach designed for an outbred pedigree was used to estimate the number of QTLs, the magnitude of QTL effects, and their genomic position. Eight unique QTLs influencing cell wall chemistry were detected from multiple peak intensities and/or PLS estimates using the one- and two-QTL models. Significant differences in chemical contents were observed among the populations from North Carolina vs Oklahoma, and results from QTLxenvironment analyses suggest that QTLs interact with environmental location. QTLs should be verified in larger experiments and in different genetic and environmental backgrounds. QTL mapping will help towards eventually identifying genes having a major effect on chemical wood properties.

6.
Genetics ; 159(2): 799-809, 2001 Oct.
Article in English | MEDLINE | ID: mdl-11606554

ABSTRACT

Anchored reference loci provide a framework for comparative mapping. They are landmarks to denote conserved chromosomal segments, allowing the synthesis of genetic maps from multiple sources. We evaluated 90 expressed sequence tag polymorphisms (ESTPs) from loblolly pine (Pinus taeda L.) for this function. Primer sets were assayed for amplification and polymorphism in six pedigrees, representing two subgenera of Pinus and a distant member of the Pinaceae, Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco). On average, 89% of primer sets amplified in four species of subgenus Pinus, 49% in one species of subgenus Strobus, and 22% in Douglas-fir. Polymorphisms were detected for 37-61% of the ESTPs within each pedigree. Comparative mapping in loblolly and slash pine (P. elliottii Englm.) revealed that ESTPs mapped to the same location. Disrupted synteny or significant disruptions in colinearity were not detected. Thirty-five ESTPs met criteria established for anchor loci. The majority of those that did not meet these criteria were excluded when map location was known in only a single species. Anchor loci provide a unifying tool for the community, facilitating the creation of a "generic" pine map and serving as a foundation for studies on genome organization and evolution.


Subject(s)
Genome, Plant , Pinus/genetics , Base Sequence , DNA Primers , Expressed Sequence Tags , Genetic Linkage , Genetic Markers , Pinus taeda
7.
Biotechniques ; 28(1): 114-6, 118, 120, passim, 2000 Jan.
Article in English | MEDLINE | ID: mdl-10649781

ABSTRACT

PCR-based codominant genetic markers were developed by using primer sequences designed from cDNA clones of loblolly pine (Pinus taeda L.). Such markers offer certain advantages relative to simple-sequence repeat (SSR), also known as short-tandem repeat (STR) markers, and include the ability to quantify and map DNA polymorphisms in expressed genes. However, detecting these DNA polymorphisms is more problematic because many DNA polymorphisms in genes involve base substitutions rather than insertions or deletions. Denaturing gradient gel electrophoresis (DGGE) is a sensitive and efficient method for detecting sequence differences among PCR fragments. This paper demonstrates the application of DGGE to genetically map expressed genes in loblolly pine. Also, heteroduplex DNA fragments, formed during the amplification of DNA from heterozygotes and from mixes of haploid DNAs from megagametophytes, enhanced and strengthened genetic interpretations and genotypic classifications.


Subject(s)
Electrophoresis, Polyacrylamide Gel/methods , Genetic Markers/genetics , Nucleic Acid Heteroduplexes/genetics , Ploidies , Polymorphism, Genetic , Alleles , DNA Primers , DNA, Plant/analysis , Heterozygote , Polymerase Chain Reaction , Trees
8.
Genetics ; 151(1): 321-30, 1999 Jan.
Article in English | MEDLINE | ID: mdl-9872970

ABSTRACT

A consensus map for loblolly pine (Pinus taeda L.) was constructed from the integration of linkage data from two unrelated three-generation outbred pedigrees. The progeny segregation data from restriction fragment length polymorphism, random amplified polymorphic DNA, and isozyme genetic markers from each pedigree were recoded to reflect the two independent populations of parental meioses, and genetic maps were constructed to represent each parent. The rate of meiotic recombination was significantly greater for males than females, as was the average estimate of genome length for males (1983.7 cM [Kosambi mapping function (K)]) and females [1339.5 cM(K)]. The integration of individual maps allows for the synthesis of genetic information from independent sources onto a single consensus map and facilitates the consolidation of linkage groups to represent the chromosomes n = 12 of loblolly pine. The resulting consensus map consists of 357 unique molecular markers and covers approximately 1300 cM(K).


Subject(s)
Chromosome Mapping , Consensus Sequence , Genetic Linkage , Genetic Markers , Pinus taeda
9.
Theor Appl Genet ; 99(3-4): 656-62, 1999 Aug.
Article in English | MEDLINE | ID: mdl-22665202

ABSTRACT

Genetic linkage maps were constructed for loblolly pine (Pinus taeda L.) and radiata pine (P. radiata D. Don) using a common set of RFLP and microsatellite markers. The map for loblolly pine combined data from two full-sib families and consisted of 20 linkage groups covering 1281 cM. The map for radiata pine had 14 linkage groups and covered 1223 cM. All of the RFLP probes readily hybridise between loblolly and radiata pine often producing similar hybridisation patterns. There were in total 60 homologous RFLP loci mapped in both species which could be used for comparative purposes. A set of 20 microsatellite markers derived from radiata pine were also assayed; however, only 9 amplified and revealed polymorphic loci in both species. Single-locus RFLP and microsatellite markers were used to match up linkage groups and compare order between species. Twelve syntenic groups were obtained each consisting of from 3 to 9 homologous loci. The order of homologous loci was colinear in most cases, suggesting no major chromosomal rearrangements in the evolution of these species. Comparative mapping between loblolly and radiata pine should facilitate genetic research in both species and provide a framework for mapping in other pine species.

10.
Theor Appl Genet ; 92(6): 673-9, 1996 May.
Article in English | MEDLINE | ID: mdl-24166390

ABSTRACT

A genetic linkage map for radiata pine (Pinus radiata D. Don) has been constructed using segregation data from a three-generation outbred pedigree. A total of 208 loci were analyzed including 165 restriction fragment length polymorphism (RFLP), 41 random amplified polymorphic DNA (RAPD) and 2 microsatellite markers. The markers were assembled into 22 linkage groups of 2 or more loci and covered a total distance of 1382 cM. Thirteen loci were unlinked to any other marker. Of the RFLP loci that were mapped, 93 were detected by loblolly pine (P. taeda L.) cDNA probes that had been previously mapped or evaluated in that species. The remaining 72 RFLP loci were detected by radiata pine probes from a PstI genomic DNA library. Two hundred and eighty RAPD primers were evaluated, and 41 loci which were segregating in a 1∶1 ratio were mapped. Two microsatellite markers were also placed on the map. This map and the markers derived from it will have wide applicability to genetic studies in P. radiata and other pine species.

11.
Curr Genet ; 27(6): 572-9, 1995 May.
Article in English | MEDLINE | ID: mdl-7553944

ABSTRACT

We determined the DNA sequence of a 2.7-kb cpDNA XbaI fragment from douglas-fir [Pseudotsuga menziesii (Mirb.) Franco]. RFLPs revealed by the 2.7-kb XbaI clone were observed to vary up to 1 kb among species within the genus Pseudotsuga and up to 200 bp among trees of P. menziesii. The polymerase chain reaction (PCR) allowed the locus of polymorphism to be identified, and the variable region was then sequenced in a second Douglas-fir tree, a single tree of a related species, Japanese Douglas-fir (P. japonica), and in a species lacking a mutation hotspot in the region, Pinus radiata (Monterey pine). The locus of polymorphism is characterized by hundreds of base pairs of imperfect, tandem direct repeats flanked by a partially duplicated and an intact trn Y-GUA gene. The duplication is direct in orientation and consists of 43 bp of the 3' end of trnY and 25 bp of its 3' flanking sequence. Tandem repeats show high sequence similarity to a 27-bp region of the trnY gene that overlaps one end of the duplication. The two trees of Douglas-fir sequenced differed by a single tandem repeat unit, whereas these trees differed from the Japanese Douglas-fir sequenced by approximately 34 repeat units. Repetitive DNA in the Pseudotsuga cpDNA hotspot was most likely generated at the time of the partial trnY gene duplication and these sequences expanded by slipped-strand mispairing and unequal crossing-over.


Subject(s)
Genome, Plant , Minisatellite Repeats , Trees/genetics , Base Sequence , Chloroplasts/genetics , DNA Primers/genetics , DNA, Plant/genetics , Molecular Sequence Data , Multigene Family , Mutation , Phylogeny , Polymerase Chain Reaction , RNA, Plant/genetics , RNA, Transfer/genetics
12.
Proc Natl Acad Sci U S A ; 92(6): 2066-70, 1995 Mar 14.
Article in English | MEDLINE | ID: mdl-11607517

ABSTRACT

We have genetically mapped a gene for resistance to white pine blister rust (Cronartium ribicola Fisch.) in sugar pine (Pinus lambertiana Dougl.) by using an approach which relies on three factors: (i) the ability to assay for genetic markers in the haploid stage of the host's life cycle, using megagametophyte seed tissue; (ii) a simple and clearly defined pathosystem; and (iii) the use of random amplified polymorphic DNA (RAPD) markers that can be quickly and efficiently evaluated. Resistance to white pine blister rust in sugar pine is known to be controlled by a single dominant gene (R). Maternal segregation of R and dominant RAPD markers were scored simultaneously following collection of megagametophytes for DNA assays and seedling inoculation with C. ribicola. Bulked samples of haploid megagametophyte DNA from resistant and susceptible offspring of segregating full-sib and half-sib families were used to evaluate 800 random decanucleotide primers. Ten loci linked with the gene for resistance to white pine blister rust were identified and segregation data were obtained from five families. Six of the linked markers were within 5 centimorgans of the gene, and one marker was 0.9 centimorgan from R. These and other markers derived by this approach may provide starting points for map-based cloning of this important gene.

13.
Theor Appl Genet ; 91(6-7): 1092-4, 1995 Nov.
Article in English | MEDLINE | ID: mdl-24170001

ABSTRACT

The pendula phenotype of Norway spruce [Picea abies (L.) Karst f. pendula] is characterized by narrow crowns and strong apical dominance and is controlled by a single dominant gene (P). This defined genetic control presents one of the few opportunities to map a single gene controlling a morphological trait in a forest tree. We used random amplified polymorphic DNA (RAPD) markers and bulked segregant analysis to identify one locus OPH10_720, linked to the pendula gene. The estimated recombination frequency (r) between OPH10_720 and P was 0.046 (SE r =0.032). Mapping of the pendula gene is an important first step towards the ultimate identification and cloning of this gene.

14.
Theor Appl Genet ; 89(6): 758-66, 1994 Nov.
Article in English | MEDLINE | ID: mdl-24178022

ABSTRACT

A total of 225 new genetic loci [151 restriction fragment length polymorphisms (RFLP) and 74 random amplified polymorphic DNAs (RAPD)] in coastal Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco var. menziesii] have been identified using a three-generation outbred pedigree. The Mendelian inheritance of 16 RFLP loci and 29 RAPD loci was demonstrated based on single-locus segregation in a sample of F2 progeny. One RFLP locus, PtIFG2025, showed segregation distortion. Probe pPtIFG2025 is a loblolly pine cDNA probe encoding for rbcS. The 16 RFLP loci and 23 allozyme loci were also assayed in a sample of 16 Douglas-fir seed-orchard clones. Allelism was determined at 11 of the 16 RFLP loci. RFLPs were able to detect slightly more variation (4.0 alleles per locus) than allozymes (3.1 alleles per locus). The inheritance of an additional 80 RAPD loci was determined based on haploid segregation analysis of megagametophytes from parent tree 013-1. Once 200-300 markers are identified and placed on a genetic map, quantitative trait loci affecting bud phenology will be mapped.

15.
Theor Appl Genet ; 88(3-4): 273-8, 1994 Jun.
Article in English | MEDLINE | ID: mdl-24186005

ABSTRACT

A genetic linkage map for loblolly pine (Pinus taeda L.) was constructed using segregation data from a three-generation outbred pedigree consisting of four grandparents, two parents, and 95 F2 progeny. The map was based predominantly on restriction fragment length polymorphism (RFLP) loci detected by cDNA probes. Sixty-five cDNA and three genomic DNA probes revealed 90 RFLP loci. Six polymorphic isozyme loci were also scored. One-fourth (24%) of the cDNA probes detected more than 1 segregating locus, an indication that multigene families are common in pines. As many as six alleles were observed at a single segregating locus among grandparents and it was not unusual for the progeny to segregate for three or four alleles per locus. Multipoint linkage analysis placed 73 RFLP and 2 isozyme loci into 20 linkage groups; the remaining 17 RFLP and 4 isozyme loci were unlinked. The mapped RFLP probes provide a new set of codominant markers for genetic analyses in loblolly pine.

16.
Theor Appl Genet ; 88(3-4): 279-82, 1994 Jun.
Article in English | MEDLINE | ID: mdl-24186006

ABSTRACT

A high-density genetic map based on restriction fragment length polymorphisms (RFLPs) is being constructed for loblolly pine (Pinus taeda L.). Consequently, a large number of DNA probes from loblolly pine are potentially available for use in other species. We have used some of these DNA probes to detect RFLPs in 12 conifers and an angiosperm. Thirty complementary DNA and two genomic DNA probes from loblolly pine were hybridized to Southern blots containing DNA from five species of Pinus (P. elliottii, P. lambertiana, P. radiata, P. sylvestris, and P. taeda), one species from each of four other genera of Pinaceae (Abies concolor, Larix laricina, Picea abies, and Pseudotsuga menziesii), one species from each of three other families of Coniferales [Sequoia sempervirens (Taxodiaceae), Torreya californica (Taxaceae) and Calocedrus decurrens (Cupressaceae)], and to one angiosperm species (Populus nigra). Results showed that mapped DNA probes from lobolly pine will cross-hybridize to genomic DNA of other species of Pinus and some other genera of the Pinaceae. Only a small proportion of the probes hybridized to genomic DNA from three other families of the Coniferales and the one angiosperm examined. This study demonstrates that mapped DNA probes from loblolly pine can be used to construct RFLP maps for related species, thus enabling the opportunity for comparative genome mapping in conifers.

17.
Genetics ; 131(1): 225-31, 1992 May.
Article in English | MEDLINE | ID: mdl-1592238

ABSTRACT

Associations among alleles at nine nuclear loci and three chloroplast DNA (cpDNA) genotypes were assessed in a sample of 247 accessions of the wild barley, Hordeum vulgare ssp. spontaneum. Alleles at two of the nine nuclear loci are marked by length variations in the intergenic spacer region of ribosomal DNA (rDNA), and those of the other seven loci are well characterized allozymes. The three chloroplast DNA (cpDNA) genotypes are marked by restriction fragment length polymorphisms resulting from three polymorphic restriction sites detected by Southern blot hybridization. The analyses were performed by dividing the nine nuclear loci into a series of two-locus subsets and constructing log-linear models to characterize associations between the subsets of two nuclear loci and the cpDNA genotypes. Statistically significant associations were detected between six of the nine nuclear loci and the cpDNA genotypes, either individually as pairwise correlations, or through interaction with another nuclear locus to form three-variate complexes. Although the sample size of the present study was inadequate for statistical evaluation of higher order interactions, the results suggest the existence of interactions in which more than two nuclear loci are involved in associations with cpDNA genotypes. The observed cytonuclear associations appear to result from interplay among a number of evolutionary forces including a mating system of predominant selfing, differentiation among gene pools of local populations, and adaptation of barley genotypes to specific environmental conditions.


Subject(s)
Chloroplasts , DNA/genetics , Hordeum/genetics , Blotting, Southern , Cell Nucleus/chemistry , DNA, Ribosomal/genetics , Genotype , Polymorphism, Genetic
18.
Theor Appl Genet ; 83(2): 238-42, 1991 Dec.
Article in English | MEDLINE | ID: mdl-24202364

ABSTRACT

A high-density restriction fragment length polymorphism (RFLP) linkage map is being constructed for loblolly pine (Pinus taeda L.). Loblolly pine cDNA and genomic DNA clones were used as probes in hybridizations to genomic DNAs prepared from grandparents, parents, and progeny of a three-generation outbred pedigree. Approximately 200 probes were evaluated for their ability to detect polymorphic loci between DNAs prepared from the two parent trees, 20-1010 and 11-1060, and cut with four different restriction enzymes: BamHI, DraI, EcoRI, and HindIII. More than half of the probes detecting single- or low-copy number sequences (56%) revealed polymorphisms between the two parents with at least one restriction enzyme. If necessary, an additional hybridization to DNAs prepared from the four grandparent trees was conducted to determine the zygosity of parent trees. Ten of these probes were hybridized to progeny DNAs from this cross and, as expected, the markers were inherited as simple codominant Mendelian alleles. Four of the ten probes detected segregation of three alleles at one locus, and four probes detected more than one independently segregating locus. RFLPs can be used immediately to assess genetic diversity in conifer populations and to "efingerprint" genotypes in tree improvement programs.

19.
Theor Appl Genet ; 81(1): 83-9, 1991 Jan.
Article in English | MEDLINE | ID: mdl-24221163

ABSTRACT

The extent and type of chloroplast DNA restriction fragment length polymorphism was determined among individual tree samples of coast redwood, Douglas fir, incense-cedar, and loblolly pine. A total of 107 trees was surveyed for three restriction enzymes (BamHI, EcoRI, HindIII) and six chloroplast DNA probes from petunia (P3, P4, P6, P8, P10, S8). The probes comprise 64% of the petunia chloroplast genome. Polymorphisms were detected in all species but loblolly pine. Coast redwood and incense-cedar had a small number of rare variants, whereas Douglas fir had one highly polymorphic region of insertions/deletions in sequences revealed by the P6 probe from petunia. The mutation hotspot is currently being studied by DNA sequence analysis.

20.
Plant Physiol ; 93(2): 829-32, 1990 Jun.
Article in English | MEDLINE | ID: mdl-16667545

ABSTRACT

Dark-grown Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) seedlings had approximately 30% of the major polypeptide of the light-harvesting chlorophyll a/b binding protein, 30% of cab mRNA, 54% of psbA mRNA, and 14% of total chlorophyll, in comparison with amounts in light-grown seedlings. Seedlings entrained under a 24-hour photoperiod of light and dark showed small diurnal fluctuations in cab and psbA mRNA levels and, when transferred to continuous conditions, no circadian rhythms in mRNA levels were apparent. These results suggest that regulation of cab gene expression in Douglas-fir differs from regulation in angiosperms, because in the latter, both light and circadian factors strongly influence the expression of cab genes.

SELECTION OF CITATIONS
SEARCH DETAIL
...