Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Food Res Int ; 190: 114604, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945616

ABSTRACT

Sheep's milk (SM) is known to differ from cow's milk (CM) in nutritional composition and physicochemical properties, which may lead to different digestion behaviours. This work aimed to investigate the impact of the species (cow vs sheep) and the structure (milk vs yogurt) on the digestion of dairy products. Using an in vitro static gastrointestinal digestion model, CM, SM, cow's milk yogurt (CY) and sheep's milk yogurt (SY) were compared on particle size evolution, microscopic observations, degree of lipolysis, degree of proteolysis, specific protein degradation and calcium bioaccessibility. Species and structure affected particle size evolution during the gastric phase resulting in smaller particles for yogurts compared to milks as well as for CM products compared to SM products. Species impacted lipid composition and lipolysis, with SM products presenting higher short/medium-chain fatty acids content and higher intestinal degree of lipolysis. Proteolysis was influenced by structure, with milks showing higher intestinal degree of proteolysis compared to yogurts. Caseins were digested faster in CM, ⍺-lactalbumin was digested faster in SM despite its higher concentration, and during gastric digestion ß-lactoglobulin was more degraded in CM products compared to SM products and more in yogurts compared to milks. Lastly, SM products released more bioaccessible calcium than CM products. In conclusion, species (cow vs sheep) impacted more the digestion compared to the structure (milk vs yogurt). In fact, SM was different from CM mainly due to a denser protein network that might slow down the accessibility of the enzyme to its substrate which induce a delay of gastric disaggregation and thus lead to slower the digestion of the nutrients.


Subject(s)
Digestion , Lipolysis , Milk , Particle Size , Proteolysis , Yogurt , Animals , Digestion/physiology , Cattle , Yogurt/analysis , Sheep , Milk/chemistry , Lactoglobulins/metabolism , Gastrointestinal Tract/metabolism , Dairy Products/analysis , Lactalbumin/metabolism , Caseins/metabolism , Caseins/analysis , Species Specificity , Milk Proteins/analysis , Milk Proteins/metabolism
2.
Food Res Int ; 167: 112716, 2023 05.
Article in English | MEDLINE | ID: mdl-37087275

ABSTRACT

Due to the lower efficiency of the elderly digestion system, new formulations are needed in order to increase the bioaccessibility of macronutrients. The aim of the work was to evaluate the effect of the process of protein sources production using either liquid (F2) vs spray dried milk proteins (F1/F3) and the source of lipids (vegetable oil (F1) vs mix of vegetable oil + bovine milk cream (F2/F3)) ingredients on the macronutrient digestion of three experimental elderly formulas. The dynamic in vitro digestion model DIDGI®, was adapted to simulate the digestive conditions of the elderly. An exhaustive review of the literature was carried out in order to simulate as closely as possible the elderly digestive parameters and constituted the starting point towards a consensus in vitro digestion model that will be proposed soon by the INFOGEST scientific network. The three experimental formulas (F1/F2/F3) differing by the composition and process applied were submitted to the DIDGI® dynamic in vitro digestion over four hours using parameters adapted to the elderly. The three formulas were compared in terms of proteolysis and lipolysis. A slight impact of the process (liquid vs spray-dried) on the degree of proteolysis at the end of digestion was observed with 50.8% for F2 compared to 56.8% for F1 and 52.9% for F3 with<5% of difference between the 3 formulas. Concerning the degree of lipolysis, the addition of bovine cream led to a lesser extent of lipolysis with 63.7 and 60.2% for F2 and F3 respectively versus 66.3% for F1 (containing only vegetable oil). Our results highlighted the beneficial input of the milk fat with a higher level of phospholipids and a lower ω6/ω3 PUFA ratio and can be a good alternative to the use of the vegetable fat in drinks for elderly people.


Subject(s)
Digestion , Gastrointestinal Diseases , Humans , Aged , Animals , Milk/metabolism , Lipolysis , Plant Oils/metabolism
3.
Food Chem ; 395: 133579, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-35780666

ABSTRACT

Fortification of human milk (HM) is often necessary to meet the nutritional requirements of preterm infants. This study sought to establish whether HM supplemented with an experimental donkey milk-derived fortifier (DMF) or a commercial bovine milk-derived fortifier (BMF) affected digestion, using an in vitro dynamic system at the preterm stage. Particle size in gastric phase was higher in DMF than in BMF, due to protein aggregates surrounding lipid globules. Before digestion, BMF, with its extensively hydrolysed proteins, had a higher degree of proteolysis (30%) than DMF (11%), which contained intact proteins. After digestion, this difference was reduced concomitantly to a similar net degree of proteolysis (33%). DMF, with a higher proportion of ω3, resulted in a lower ω6/ω3 free PUFA ratio than BMF throughout digestion, although the final degree of lipolysis was similar (54%). In summary, DMF could represent a better source of proteins and lipids for the preterm infant.


Subject(s)
Infant, Premature , Milk, Human , Animals , Digestion , Equidae , Food, Fortified , Humans , Infant , Infant, Newborn , Lipolysis , Milk, Human/chemistry , Proteolysis
4.
Food Chem ; 369: 130998, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34507088

ABSTRACT

High Temperature-Short Time (HTST) pasteurization was proposed as an alternative to Holder pasteurization (HOP) to increase the retention of specific human milk (HM) bioactive proteins. The present study explored whether HTST and HOP differently affect peptide release during simulated preterm infant gastrointestinal digestion. Raw (RHM), HOP- and HTST- pasteurized HM were digested using an in vitro dynamic system, and the identified peptides were analyzed by mass spectrometry and multivariate statistics. Before digestion, 158 peptides were identified in either RHM, HTST- or HOP- HM, mostly (84.4%) originating from ß-casein (CASB). During gastric digestion, HOP-HM presented a greater number and more abundant specific CASB peptides. A delayed release of peptides was observed in RHM during the intestinal phase, with respect to both pasteurized HM. Although limited to gastric digestion, the HM peptidomic profile differed according to the pasteurization type, and the pattern of the HTST peptides showed a greater similarity with RHM.


Subject(s)
Milk, Human , Pasteurization , Animals , Digestion , Humans , Infant , Infant, Newborn , Infant, Premature , Milk , Peptides , Temperature
5.
Food Res Int ; 148: 110567, 2021 10.
Article in English | MEDLINE | ID: mdl-34507722

ABSTRACT

Edible insects are considered as a promising and sustainable alternative protein source for humans, although risk assessments, with particular reference to the allergic potential of insect proteins, are required. Considering that insects are likely to be consumed after processing, it is crucial to assess how processing can influence allergenicity. In our study, we investigated how boiling and frying affect the IgE cross-recognition of proteins from five edible insects (mealworm, buffalo worm, silkworm, cricket and grasshopper). We considered three groups of Italian patients allergic to shrimps and to house dust mites, who had never consumed insects before and two subjects with occupational allergy and food sensitization to mealworm. Our data suggest that thermal processing may change the solubility of proteins, thereby resulting in a protein shift from water-soluble fractions to water-insoluble fractions. Immunoblot and LC-MS/MS analyses have shown that tropomyosin may play an important role as a cross-allergen for house dust mite and shrimp allergic patients, while larval cuticle protein seems to play a major role in the cross-reactivity of patients primarily sensitized to mealworm. On the basis of our results, the effects of processing appear to be protein-, species- and treatment-specific. Therefore, house dust mite, shrimp and mealworm allergic patients should consume insects with caution, even after thermal processing.


Subject(s)
Hypersensitivity , Tenebrio , Allergens , Animals , Chromatography, Liquid , Humans , Immunoglobulin E , Insecta , Italy , Pyroglyphidae , Tandem Mass Spectrometry
6.
Pediatr Allergy Immunol ; 32(8): 1743-1755, 2021 11.
Article in English | MEDLINE | ID: mdl-34146442

ABSTRACT

BACKGROUND: Hazelnut allergy, which is characterized by symptoms that range from mild to severe, is one of the most common allergies in children throughout Europe, and an accurate diagnosis of this allergy is therefore essential. However, lipophilic allergens, such as oleosins, are generally underrepresented in diagnostic tests. We therefore sought to characterize the IgE reactivity of raw and roasted hazelnut oleosins, using the sera of hazelnut-allergic pediatric patients. METHODS: Raw and roasted hazelnut oil body-associated proteins were analyzed by means of 1D and 2D electrophoresis and MS. Oleosin IgE reactivity was assessed by immunoblotting with the sera of 27 children who have confirmed hazelnut allergies and from 10 tolerant subjects. A molecular characterization of the oleosins was performed by interrogating the C. avellana cv. Jefferson and cv. TGL genomes, and through expression and purification of the recombinant new allergen. RESULTS: A proteomic and genomic investigation allowed two new oleosins to be identified, in addition to Cor a 12 and Cor a 13, in hazelnut oil bodies. One of the new oleosins was registered as a new allergen, according to the WHO/IUIS Allergen Nomenclature Subcommittee criteria, and termed Cor a 15. Cor a 15 was the most frequently immunorecognized oleosin in our cohort. Oleosins resulted to be the only immunorecognized allergens in a subgroup of allergic patients who showed low ImmunoCAP assay IgE values and positive OFC and PbP. Hazelnut roasting resulted in an increase in oleosin immunoreactivity. CONCLUSION: A novel hazelnut oleosin, named Cor a 15, has been discovered. Cor a 15 could play a role in eliciting an allergic reaction in a subgroup of pediatric patients that exclusively immunorecognize oleosins. The high prevalence of hazelnut oleosin sensitization here reported further confirms the need to include oleosins in routine diagnostic procedures.


Subject(s)
Corylus , Nut Hypersensitivity , Allergens , Child , Humans , Immunoglobulin E , Italy , Nut Hypersensitivity/diagnosis , Plant Proteins , Proteomics
7.
Food Chem ; 342: 128174, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33077287

ABSTRACT

Roasting is known to affect the protein profile and allergenicity of hazelnuts (Corylus avellana cv TGL). The aim of the study was to investigate whether roasting techniques based on different heat transfer methods (hot air and infrared), differently affect the protein solubility and the IgE-binding capacities of both the soluble and insoluble hazelnut protein fractions. The immune-reactivity of the Cor a 9, Cor a 11 and Cor a 14 allergens resulted to be stable after roasting at 140 °C, for both types of treatment, while roasting at 170 °C caused a reduction in IgE-binding, which was particularly noticeable after infrared processing, that led to an almost complete disappearance of allergenicity. Microscopical analyses showed that roasting caused cytoplasmic network disruption, with a loss of lipid compartmentalization, as well as an alteration of the structure of the protein bodies and of the cell wall organization.


Subject(s)
Allergens/immunology , Cooking/methods , Corylus/metabolism , Infrared Rays , Plant Proteins/immunology , Allergens/chemistry , Child , Chromatography, High Pressure Liquid , Food Hypersensitivity/blood , Food Hypersensitivity/pathology , Hot Temperature , Humans , Immunoglobulin E/blood , Immunoglobulin E/immunology , Plant Proteins/chemistry , Protein Stability , Tandem Mass Spectrometry
8.
Food Chem ; 328: 127126, 2020 Oct 30.
Article in English | MEDLINE | ID: mdl-32492605

ABSTRACT

The high-temperature short-time (HTST, 72 °C, 15 s) pasteurization of human milk (HM) has been proposed as an alternative to the Holder method (HoP, 62.5 °C, 30 min), to increase the preservation of bioactive compounds. We have investigated the impact of HTST and HoP pasteurization on the gastrointestinal kinetics of human milk, using a dynamic in vitro system in a preterm newborn model. An increased protein aggregation on the surface of fat globules following pasteurization, albeit to a lesser extent in HTST than in HoP, was observed. Despite relevant differences in the undigested milk samples, both pasteurization methods led to similar proteolytic patterns, while raw HM presented a higher native lactoferrin content throughout digestion. The slightly decreased amino acid release following HoP, with respect to HTST and raw HM, indicated that peptidomic analysis, which is currently underway, might provide interesting insights on the differential digestive kinetics of differently pasteurized HM.


Subject(s)
Milk, Human/chemistry , Pasteurization/methods , Chromatography, High Pressure Liquid , Hot Temperature , Humans , Infant, Newborn , Infant, Premature , Lactoferrin/chemistry , Mass Spectrometry , Proteolysis , Time Factors
9.
Microorganisms ; 9(1)2020 Dec 29.
Article in English | MEDLINE | ID: mdl-33383704

ABSTRACT

Lactic acid bacteria (LAB) potential in the food industry and in the biotechnological sector is a well-established interest. LAB potential in counteracting especially food-borne infections has received growing attention, but despite being a road full of promises is yet poorly explored. Furthermore, the ability of LAB to produce antimicrobial compounds, both by ribosomal synthesis and by decrypting them from proteins, is of high value when considering the growing impact of multidrug resistant strains. The antimicrobial potential of 14 food-derived lactic acid bacteria strains has been investigated in this study. Among them, four strains were able to counteract Listeria monocytogenes growth: Lactococcus lactis SN12 and L. lactis SN17 by high lactic acid production, whereas L. lactis 41FLL3 and Lactobacillus sakei I151 by Nisin Z and Sakacin P production, respectively. Strains Lactococcus lactis MG1363, Lactobacillus rhamnosus 17D10 and Lactobacillus helveticus 4D5 were tested and selected for their potential attitude to hydrolyze caseins. All the strains were able to release bioactive peptides with already known antimicrobial, antihypertensive and opioid activities. These features render these strains or their bioactive molecules suitable for use in food as biocontrol agents, or as nutraceutical supplements to treat mild disorders such as moderate hypertension and children insomnia. These results highlight once again that LAB potential in ensuring food safety, food nutraceutical value and ultimately in favoring human health is still underexplored and underexploited.

SELECTION OF CITATIONS
SEARCH DETAIL
...