Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
J Hazard Mater ; 452: 131279, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36989795

ABSTRACT

Harmful algal blooms (HABs) in coastal areas similarly impact both ecosystems and human health. The translocation of phytoplankton species via maritime transport can potentially promote the growth of HABs in coastal systems. Accordingly, ballast water must be disinfected. The main goal of this study is to assess the effectiveness of different emerging biocides, including H2O2, peracetic acid (PAA), peroxymonosulfate (PMS), and peroxydisulfate (PDS). The effectiveness of these biocides is compared with that of conventional chlorination methods. Their effects on two ichthyotoxic microalgae with worldwide distribution, i.e., Prymnesium parvum and Heterosigma akashiwo, are examined. To ensure the prolonged effectiveness of the different reagents, their concentration-response curves for 14 days are constructed and examined. The results suggest a strong but shorter effect by PMS (EC50 = 0.40-1.99 mg·L-1) and PAA (EC50 = 0.32-2.70 mg·L-1), a maintained effect by H2O2 (EC50 = 6.67-7.08 mg·L-1), and a negligible effect by PDS. H. akashiwo indicates higher resistance than P. parvum, except when H2O2 is used. Based on the growth inhibition performance and consumption of the reagents as well as a review of important aspects regarding their application, using H2O2, PAA, or PMS can be a feasible alternative to chlorine-based reagents for inhibiting the growth of harmful phytoplankton.


Subject(s)
Disinfectants , Herbicides , Humans , Phytoplankton , Oxidants/toxicity , Hydrogen Peroxide , Ecosystem , Harmful Algal Bloom , Disinfectants/toxicity
2.
Water Res ; 232: 119686, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36764105

ABSTRACT

Ultraviolet (UV) radiation is a well-implemented process for water disinfection. The development of emergent UV sources, such as light-emitting diodes (LEDs), has afforded new possibilities for advanced oxidation processes. The emission wavelength is considered to be an important factor for photo-chemical processes in terms of both biological damage and energetic efficiency, as the inactivation mechanisms and mode-of-action may differ according to the wavelength that is applied. In addition, these processes merit exploration for inactivating emerging pathogens, such as marine vibrios, that are important bacteria to control in maritime activities. The main goal of this study was to compare the disinfection efficacy of several UV-LED driven processes with different modes of action. First, the effect of UV-LEDs was assessed at different UV ranges (UV-A, UV-B, or UV-C). Second, the possible enhancement of a combination with hydrogen peroxide (H2O2) or peroxymonosulfate salt (HSO5-) was investigated under two different application strategies, i.e. simultaneous or sequential. The results obtained indicate a high sensitivity of Vibrio alginolyticus to UV radiation, especially under UV-B (kobs = 0.24 cm2/mJ) and UV-C (kobs = 1.47 cm2/mJ) irradiation. The highest inactivation rate constants were obtained for UV/HSO5- (kobs (cm2/mJ)=0.0007 (UV-A); 0.39 (UV-B); 1.79 (UV-C)) with respect to UV/H2O2 (kobs (cm2/mJ)=0.0006 (UV-A); 0.26 (UV-B); and 1.54 (UV-C)) processes, however, regrowth was avoided only with UV/H2O2. Additionally, the disinfection enhancement caused by a chemical addition was more evident in the order UV-A > UV-B > UV-C. By applying H2O2 (10 mg/L) or HSO5- (2.5 mg/L) in a sequential mode before the UV, negligible effects were obtained in comparison with the simultaneous application. Finally, promising electrical energy per order (EEO) values were obtained as follows: UV/HSO5- (EEO (kWh/m3)=1.68 (UV-A); 0.20 (UV-B); 0.04 (UV-C)) and UV/H2O2 (EEO (kWh/m3)=2.15 (UV-A); 0.32 (UV-B); 0.04 (UV-C)), demonstrating the potential of UV-LEDs for disinfection in particular activities such as the aquaculture industry or maritime transport.


Subject(s)
Hydrogen Peroxide , Water Purification , Hydrogen Peroxide/pharmacology , Vibrio alginolyticus , Water Purification/methods , Ultraviolet Rays , Disinfection/methods , Photochemical Processes
3.
Sci Total Environ ; 847: 157559, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35878852

ABSTRACT

The Ballast Water Management Convention (BWMC) establishes limits regarding the permissible number of viable organisms in discharged ballast water. Ozone as a ballast water treatment is interesting because it can be generated in-situ and has strong oxidant power. Additionally, some oxidants can be formed in reaction with seawater, especially brominated compounds, that assist in inactivating microorganisms. The objective of this study is to assess the efficacy of semicontinuous and batch ozonation as well as their combination with peroxymonosulfate salt (PMS) as methods to be used to ensure compliance with regulation D2 of the BWMC using Tetraselmis suecica as a standard microorganism. Growth modeling method was employed to determine the inactivation achieved by the treatments. The results show that ozone is an effective treatment for accomplishing the D2 of the BWMC. Batch ozonation is more efficient than semicontinuous ozonation probably because of the brominated compounds formed during the ozone saturation of the water. The oxidants that are developed during the ozonation of seawater prolong the residual effect of the treatment throughout the days of storage with practically no presence of them in the ballast tanks at 72 h. The addition of the PMS increases the inactivation in the semicontinuous ozonation, but a threshold concentration of ozone is needed to observe the synergistic effect of both oxidants. No increase is associated with the combination of O3 and PMS in the case of batch ozonation.


Subject(s)
Microalgae , Ozone , Water Pollutants, Chemical , Water Purification , Oxidants , Oxidation-Reduction , Peroxides , Ships , Water Purification/methods
4.
Microorganisms ; 10(4)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35456785

ABSTRACT

Harmful algal blooms in coastal areas can significantly impact a water source. Microorganisms such as cyanobacteria and associated pathogenic bacteria may endanger an ecosystem and human health by causing significant eco-hazards. This study assesses the efficacy of two different reagents, H2O2 and S2O82−, as (pre-)treatment options for algae-laden waters. Anabaena sp. and Vibrio alginolyticus have been selected as target microorganisms. With the objective of activating H2O2 or S2O82−, additional experiments have been performed with the presence of small amounts of iron (18 µmol/L). For the cyanobacterial case, H2O2-based processes demonstrate greater efficiency over that of S2O82−, as Anabaena sp. is particularly affected by H2O2, for which >90% of growth inhibition has been achieved with 0.088 mmol/L of H2O2 (at 72 h of exposure). The response of Anabaena sp. as a co-culture with V. alginolyticus implies the use of major H2O2 amounts for its inactivation (0.29 mmol/L of H2O2), while the effects of H2O2/Fe(II) suggests an improvement of ~60% compared to single H2O2. These H2O2 doses are not sufficient for preventing the regrowth of V. alginolyticus after 24 h. The effects of S2O82− (+ Fe(II)) are moderate, reaching maximum inhibition growth of ~50% for Anabaena sp. at seven days of exposure. Nevertheless, doses of 3 mmol/L of S2O82− can prevent the regrowth of V. alginolyticus. These findings have implications for the mitigation of HABs but also for the associated bacteria that threaten many coastal ecosystems.

5.
Mar Pollut Bull ; 170: 112643, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34175694

ABSTRACT

The Ballast Water Management Convention (BWMC) establishes limits for viable organisms in discharged ballast water. However, organisms smaller than 10 µm are not considered in this regulation although they represent, in some regions, the majority of the phytoplankton organisms in marine water. The objective in this study is to assess three photosynthetic species smaller than 10 µm as potential standard test organism (STO) in experimentation focused on the inactivating efficacy of ultraviolet treatments (UV). A growth modelling method was employed to determine the reduction of the viable cell concentration under either light or dark post-treatment conditions to evaluate the importance of the photoreactivation. In spite of its moderate growth rate, the high UV resistance in combination with the abundance and worldwide distribution of Synechococcus sp. and the environmental importance of this species constitute important reasons for considering Synechococcus sp. as a valuable STO for ballast water treatment.


Subject(s)
Ships , Water Purification , Phytoplankton , Water
6.
Mar Pollut Bull ; 162: 111886, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33310544

ABSTRACT

Due to the increasing number of ecosystem invasions with the introduction of exogenous species via ballast water, the International Maritime Organization adopted the Ballast Water Convention (BWMC). The BWMC establishes standards for the concentration of viable organisms in a ballast water discharge. Ultraviolet (UV) irradiation is commonly used for treating ballast water; however, regrowth after UV irradiation and other drawbacks have been reported. In this study, improvement in UV treatment with the addition of hydrogen peroxide or peroxymonosulfate salt was investigated using the microalgae Tetraselmis suecica as the target organism. Results reported that each of these reagents added in a concentration of 10 ppm reduced the concentration of initial cells by more than 96%, increased the UV inactivation rate, and enabled reaching greater level of inactivation with the treatment. These improvements imply a reduction of the UV doses required for a consistent compliance with the BWMC standards.


Subject(s)
Microalgae , Water Purification , Ecosystem , Hydrogen Peroxide , Peroxides , Ships , Ultraviolet Rays
7.
Water Res ; 181: 115928, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32504908

ABSTRACT

The development of technologically advanced recirculation aquaculture systems (RAS) implies the reuse of water in a high recirculation rate (>90%). One of the most important phases for water management in RAS involves water disinfection in order to avoid proliferation of potential pathogens and related fish diseases. Accordingly, different approaches have been assessed in this study by performing a comparison of photolytic (UV-LEDs) at different wavelengths (λ = 262, 268 and 262 + 268 nm), photochemical (UV-LEDs/H2O2, UV-LEDs/HSO5- and UV-LEDs/S2O82-) and photocatalytic (TiO2/SiO2/UV-LEDs and ZnO/SiO2/UV-LEDs) processes for the disinfection of water in RAS streams. Different laboratory tests were performed in batch scale with real RAS stream water and naturally occurring bacteria (Aeromonas hydrophyla and Citrobacter gillenii) as target microorganisms. Regarding photolytic processes, higher inactivation rates were obtained by combining λ262+268 in front of single wavelengths. Photochemical processes showed higher efficiencies by comparison with a single UV-C process, especially at 10 mg L-1 of initial oxidant dose. The inactivation kinetic rate constant was improved in the range of 15-38%, with major efficiency for UV/H2O2 âˆ¼ UV/HSO5- > UV/S2O82-. According to photocatalytic tests, higher efficiencies were obtained by improving the inactivation kinetic rate constant up to 55% in comparison with a single UV-C process. Preliminary cost estimation was conducted for all tested disinfection methods. Those results suggest the potential application of UV-LEDs as promoter of different photochemical and photocatalytic processes, which are able to enhance disinfection in particular cases, such as the aquaculture industry.


Subject(s)
Disinfection , Water Purification , Aquaculture , Hydrogen Peroxide , Photochemical Processes , Rivers , Silicon Dioxide , Ultraviolet Rays
8.
Sci Total Environ ; 711: 134611, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-31810674

ABSTRACT

Meeting the recent biological standards established by the Ballast Water Management Convention requires the application of ballast water treatment systems; ultraviolet irradiation is a frequently used option. However, organisms can repair the damage caused by ultraviolet irradiation primarily with photo-repair mechanisms that are dependent on the availability of light. The objective of this study is to quantify the impact of dark storage following ultraviolet irradiation on the viability of the microalgae Tetraselmis suecica. Results showed that one day of dark storage after ultraviolet irradiation enhanced the inactivation rate by 50% with respect to the absence of dark storage and increased up to the 84% with five days of dark storage. These results are consistent with photorepair, mostly in the first two days, prevented in the dark. The dose required to inactivate a determined ratio of organisms was correlated with the length of the dark post-treatment according to an inverse proportional function. This correlation may help to optimize the operation of ultraviolet ballast water treatment systems. Further, the results show that growth assays can detect organisms that are capable of repair after treatment with UV.


Subject(s)
Chlorophyta , Water Purification , Ultraviolet Rays , Water , Water Supply
9.
Water Res ; 163: 114866, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31344506

ABSTRACT

Over the years, industrial activities that generate high salinity effluents have been intensifying; this has relevant potential for causing organic and microbiological pollution which damages both human and ocean health. The development of new regulations, such as ballast water convention, encourage the development of treatment systems that can be feasible for treating seawater effluents. Accordingly, an approach based on the UV activation of persulfate salts has been assessed. In this scenario, two different persulfate sources (S2O82- and HSO5-) were evaluated under UV-C irradiation for disinfection purposes. An optimization process was performed with low chemical doses (<1 mM). In order to extensively examine the applicability on seawater, different water matrices were tested as well as different microorganisms including both fecal and marine bacteria. An enhancement of UV-inactivation with the addition of persulfate salts was achieved in all cases, kinetic rate constant has been accelerated by up to 79% in seawater. It implies a UV-dose saving up to 45% to achieve 4-log reductions. Best efficiencies were obtained with [HSO5-] = 0.005 mM and [S2O82-] = 0.5 mM. Higher effectiveness was obtained with the use of HSO5- due to its low stability and interaction with chloride. Also, different responses were obtained according to the specific microorganisms by achieving faster disinfection in Gram-negative than in Gram-positive bacteria, the sensitivity observed was Vibrio spp. > E. coli > E. faecalis ≈ Marine Heterotrophic Bacteria. With an evaluation of regrowth after treatment, greater cell damage was detected with the addition of persulfate salts. The major ability of regrowth for marine bacteria encourages the use of a residual disinfectant after disinfection processes.


Subject(s)
Disinfection , Water Purification , Escherichia coli , Salts , Ultraviolet Rays
10.
Photochem Photobiol Sci ; 18(4): 878-883, 2019 Apr 10.
Article in English | MEDLINE | ID: mdl-30411767

ABSTRACT

The development of advanced photochemical processes has experienced the emergence of a promising alternative for water disinfection, different from traditional methods. The applicability has primarily been investigated in drinking and wastewater; however, new challenges related to microbiological control in marine waters necessitate evaluating the applicability of this process in such water matrices. In this study, the efficacy of persulfate (PDS) activated with UV-light against E. faecalis has been tested on the bench scale. Firstly, optimization of the different PDS concentrations (1-10 mM) and exposure times (0-5 min) was performed in distilled water. 1 mM of PDS was selected as the best dosage within the range tested. Secondly, in order to evaluate the effects of different inorganic compounds usually found in natural waters, the efficiency of the UV/PDS system was tested in three different matrices: mineral water, saltwater, and marine saltwater. Finally, different bacteria were evaluated in consortium (E. coli + E. faecalis), suggesting the same inactivation level independently on the bacterial groups and structures. The results suggest that PDS is an attractive alternative to other photochemical processes currently in use for seawater treatment and this application deserved further research.

11.
Ecotoxicol Environ Saf ; 169: 68-75, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30423509

ABSTRACT

Cruise ship wastewater discharges are pollution sources towards the marine environment that are poorly characterized. In this study, wastewater samples from cruise ships have been obtained during repair works in a shipyard. Different organic pollutants have been analyzed and their concentrations were similar to those in urban wastewaters for pharmaceuticals and fragrances, but higher for UV filters and PAHs. For the first time, cypermethrin, a pesticide highly toxic towards aquatic species, was found at relevant concentrations (>1 µg L^-1). The faecal microorganisms were for all parameters higher than 10^4 CFU 100 mL^-1, which together with the presence of antibiotic compounds in wastewater (e.g., triclosan), could potentially lead to the generation of antibiotic resistance bacteria (ARB). The historical position of cruise ships, determined from the Automatic Identification System (AIS), were used to define the time ships were underway, at port, or in repair. From ship's passenger and crew load, and from estimates of discharges the total volume of wastewater produced by these ships (371,000 m^3 year^-1) and the average flow (0.15 ±â€¯0.03 m^3crew^-1 day^-1) were calculated.


Subject(s)
Ships , Wastewater/chemistry , Wastewater/microbiology , Water Pollutants, Chemical/analysis , Water Pollutants/analysis , Pesticides/analysis , Pyrethrins/analysis
12.
Water Res ; 140: 377-386, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29753242

ABSTRACT

Seawater treatment is increasingly required due to industrial activities that use substantial volumes of seawater in their processes. The shipping industry and the associated management of a ship's ballast water are currently considered a global challenge for the seas. Related to that, the suitability of an Electrochemical Advanced Oxidation Process (EAOP) with Boron Doped Diamond (BDD) electrodes has been assessed on a laboratory scale for the disinfection of seawater. This technology can produce both reactive oxygen species and chlorine species (especially in seawater) that are responsible for inactivation. The EAOP was applied in a continuous-flow regime with real seawater. Natural marine heterotrophic bacteria (MHB) were used as an indicator of disinfection efficiency. A biphasic inactivation kinetic model was fitted on experimental points, achieving 4-Log reductions at 0.019 Ah L-1. By assessing regrowth after treatment, results suggest that higher bacterial damages result from the EAOP when it is compared to chlorination. Furthermore, several issues lacking fundamental understanding were investigated such as recolonization capacity or bacterial community dynamics. It was concluded that, despite disinfection processes being effective, there is not only a possibility for regrowth after treatment but also a change on bacterial population diversity produced by the treatment. Finally, energy consumption was estimated and indicated that 0.264 kWh·m-3 are needed for 4.8-Log reductions of MHB; otherwise, with 0.035 kWh·m-3, less disinfection efficiency can be obtained (2.2-Log red). However, with a residual oxidant in the solution, total inactivation can be achieved in three days.


Subject(s)
Bacteria , Electrochemical Techniques/methods , Seawater/microbiology , Ships , Water Purification/methods , Boron , Chlorine/pharmacology , Diamond , Disinfection/instrumentation , Disinfection/methods , Electrochemical Techniques/instrumentation , Electrodes , Heterotrophic Processes , Kinetics , Norway , Oxidants/chemistry , Oxidation-Reduction , Water Microbiology
13.
Environ Sci Pollut Res Int ; 25(28): 27693-27703, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29307073

ABSTRACT

The importance of seawater treatment in order to avoid microbiological pollution related to aquaculture or ballast water management has increased during the last few years. Bacterial indicators used for the evaluation of different disinfection treatments are usually related with both waste and drinking water, these standards are not usual microorganisms found in seawater. Thus, it is thought necessary to study the behavior of different marine-specific organisms in regard to improve the disinfection processes in seawater. In this study, three different bacteria have been selected among major groups of bacterial community from marine waters: two water-associated, Roseobacter sp. and Pseudomonas litoralis, and one sediment-associated, Kocuria rhizophila. A kinetic inactivation model together with a post-treatment growth tendency has been obtained after the application of UV-C and UV/H2O2 processes. According to the first kinetic rate constant, different responses were obtained for the different bacterial groups. Once the treatment was applied, modeling of growth curves revealed high recover within the first 3 days after treatment, even when UV/H2O2 was applied. This study introduces a sensitivity index, in which results show different levels of resistance for both treatments, being Roseobacter sp. the most sensitive bacteria, followed by P. litoralis and K. rhizophila.


Subject(s)
Disinfection/methods , Hydrogen Peroxide/chemistry , Seawater/microbiology , Ultraviolet Rays , Kinetics , Micrococcaceae/drug effects , Micrococcaceae/radiation effects , Models, Theoretical , Photochemical Processes , Pseudomonas/drug effects , Pseudomonas/radiation effects , Roseobacter/drug effects , Roseobacter/radiation effects
14.
Sci Total Environ ; 603-604: 550-561, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-28645053

ABSTRACT

Assessing the disinfection of ballast water and its compliance with international standards requires determining the size, viability, and concentration of planktonic organisms. The FlowCAM (Flow Cytometer and Microscope) is an Imaging Flow Cytometry designed to obtain the particle concentration, images, and quantitative morphologic information. The objective in this paper is to establish the basis for transforming the FlowCAM from being a laboratory analyzer into a tool for systematic monitoring of ballast water. The capacity of the FlowCAM was evaluated by analyzing artificial microbeads, phytoplankton monocultures, and real seawater samples. Microbead analyses reported high accuracy and precision in size and concentration measurements. Monoculture analyses showed the effect of disinfection treatments in cell appearance and growth. Low concentration and heterogeneity of particles in real seawater analyses require the comprehensive observation of images by experts. Additionally, some physical characteristics of the device must be improved. The optimization of device configuration enables the quick transferring of files and information between parties involved in ballast water management. FlowCAM may become a feasible technology for this after the device and protocols are adapted.


Subject(s)
Disinfection , Phytoplankton , Seawater , Ships , Water Purification
15.
Sci Total Environ ; 581-582: 144-152, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28011021

ABSTRACT

Water contained on ships is employed in the majority of activities on a vessel; therefore, it is necessary to correctly manage through marine water treatments. Among the main water streams generated on vessels, ballast water appears to be an emerging global challenge (especially on cargo ships) due to the transport of invasive species and the significant impact that the ballast water discharge could have on ecosystems and human activities. To avoid this problem, ballast water treatment must be implemented prior to water discharge in accordance with the upcoming Ballast Water Management Convention. Different UV-based treatments (photolytic: UV-C and UV/H2O2, photocatalytic: UV/TiO2), have been compared for seawater disinfection. E. faecalis is proposed as a biodosimeter organism for UV-based treatments and demonstrates good properties for being considered as a Standard Test Organism for seawater. Inactivation rates by means of the UV-based treatments were obtained using a flow-through UV-reactor. Based on the two variables responses that were studied (kinetic rate constant and UV-Dose reductions), both advanced oxidation processes (UV/H2O2 and photocatalysis) were more effective than UV-C treatment. Evaluation of salinity on the processes suggests different responses according to the treatments: major interference on photocatalysis treatment and minimal impact on UV/H2O2.


Subject(s)
Disinfection , Salinity , Seawater/chemistry , Ships , Ultraviolet Rays , Water Purification , Hydrogen Peroxide , Titanium
16.
Water Res ; 71: 330-40, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25682559

ABSTRACT

Studies on the development and evolution of anaerobic digestion (AD) pretreatments are nowadays becoming widespread, due to the outstanding benefits that these processes could entail in the management of sewage sludge. Production of sewage sludge in wastewater treatment plants (WWTPs) is becoming an extremely important environmental issue. The work presented in this paper is a continuation of our previous studies with the aim of understanding and developing the advanced thermal hydrolysis (ATH) process. ATH is a novel AD pretreatment based on a thermal hydrolysis (TH) process plus hydrogen peroxide (H2O2) addition that takes advantage of a peroxidation/direct steam injection synergistic effect. The main goal of the present research was to compare the performance of TH and ATH, conducted at a wide range of operating conditions, as pretreatments of mesophilic AD with an emphasis on methane production enhancement as a key parameter and its connection with the sludge solubilization. Results showed that both TH and ATH patently improved methane production in subsequent mesophilic BMP (biochemical methane potential) tests in comparison with BMP control tests (raw secondary sewage sludge). Besides other interesting results and discussions, a promising result was obtained since ATH, operated at temperature (115 °C), pretreatment time (5 min) and pressure (1 bar) considerably below those typically used in TH (170 °C, 30 min, 8 bar), managed to enhance the methane production in subsequent mesophilic BMP tests [biodegradability factor (fB) = cumulative CH4production/cumulative CH4production (Control) = 1.51 ± 0.01] to quite similar levels than conventional TH pretreatment [fB = 1.52 ± 0.03].


Subject(s)
Methane/chemistry , Sewage/chemistry , Waste Disposal, Fluid/methods , Anaerobiosis , Biodegradation, Environmental , Bioreactors , Hydrogen Peroxide/chemistry , Hydrolysis , Temperature , Water Purification/methods
17.
Environ Sci Pollut Res Int ; 21(3): 1680-1690, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23955143

ABSTRACT

It now is widely recognised that the global temperature is rising, a phenomenon which could alter the effects of pollution on wildlife. In order to assess the role of temperature and exposure to chlorine due to cooling water discharges, a battery of metabolic, oxidative stress and histological parameters were evaluated in Mytilus galloprovincialis after 15 and 30 days at 15 °C and at two increased temperatures (+5 and +10 °C). Diverse gill pathologies such as haemolymphatic sinus dilatation, an increased number of mucocytes and granulocytes as well as a lower number of cilia were observed after 30 days exposure at higher temperatures. Protein, amino acid, triglyceride and fatty acid levels decreased when the temperature increased, as a consequence of higher energetic demand. Similarly, acetylcholinesterase, catalase and glutathione S-transferase activities showed an inhibition at higher temperatures, although gill lipid peroxidation levels remained unaffected. Our results suggest that increased temperatures induce deterioration in the health status of the mussels and in their defensive capacity against a polluted environment.


Subject(s)
Chlorine/toxicity , Environmental Monitoring/methods , Temperature , Water Pollutants, Chemical/toxicity , Animals , Catalase/metabolism , Climate Change , Gills/drug effects , Gills/metabolism , Gills/pathology , Glutathione Transferase/metabolism , Lipid Peroxidation/drug effects , Mytilus/drug effects , Mytilus/metabolism , Mytilus/physiology , Oxidative Stress , Stress, Physiological
18.
Environ Sci Technol ; 46(11): 6158-66, 2012 Jun 05.
Article in English | MEDLINE | ID: mdl-22463756

ABSTRACT

The aim of this work was to study in depth the behavior and optimization of a novel process, called advanced thermal hydrolysis (ATH), to determine its utility as a pretreatment (sludge solubilization) or postreatment (organic matter removal) for anaerobic digestion (AD) in the sludge line of wastewater treatment plants (WWTPs). ATH is based on a thermal hydrolysis (TH) process plus hydrogen peroxide (H(2)O(2)) addition and takes advantage of a peroxidation/direct steam injection synergistic effect. On the basis of the response surface methodology (RSM) and a modified Doehlert design, an empirical second-order polynomial model was developed for the total yield of: (a) disintegration degree [DD (%)] (solubilization), (b) filtration constant [F(c) (cm(2)/min)] (dewaterability), and (c) organic matter removal (%). The variables considered were operation time (t), temperature reached after initial heating (T), and oxidant coefficient (n = oxygen(supplied)/oxygen(stoichiometric)). As the model predicts, in the case of the ATH process with high levels of oxidant, it is possible to achieve an organic matter removal of up to 92%, but the conditions required are prohibitive on an industrial scale. ATH operated at optimal conditions (oxygen amount 30% of stoichiometric, 115 °C and 24 min) gave promising results as a pretreatment, with similar solubilization and markedly better dewaterability levels in comparison to those obtained with TH at 170 °C. The empirical validation of the model was satisfactory.


Subject(s)
Sewage/analysis , Temperature , Water Purification/methods , Biological Oxygen Demand Analysis , Carbon/analysis , Filtration , Hydrolysis , Organic Chemicals/isolation & purification , Solubility , Spain , Water/chemistry
19.
Biofouling ; 26(8): 923-30, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21038152

ABSTRACT

In an industrial seawater cooling system, the effects of three different antifouling treatments, viz. sodium hypochlorite (NaClO), aliphatic amines (Mexel®432) and UV radiation, on the characteristics of the fouling formed were evaluated. For this study a portable pilot plant, as a side-stream monitoring system and seawater cooling system, was employed. The pilot plant simulated a power plant steam condenser, having four titanium tubes under different treatment patterns, where fouling progression could be monitored. The nature of the fouling obtained was chiefly inorganic, showing a clear dependence on the antifouling treatment employed. After 72 days the tubes under treatment showed a reduction in the heat transfer resistance (R) of around 70% for NaClO, 48% for aliphatic amines and 55% for UV, with respect to the untreated tube. The use of a logistic model was very useful for predicting the fouling progression and the maximum asymptotic value of the increment in the heat transfer resistance (ΔR(max)). The apparent thermal conductivity (λ) of the fouling layer showed a direct relationship with the percentage of organic matter in the collected fouling. The characteristics and mode of action of the different treatments used led to fouling with diverse physicochemical properties.


Subject(s)
Amines/pharmacology , Biofouling , Disinfectants/pharmacology , Power Plants , Seawater/microbiology , Sodium Hypochlorite/pharmacology , Surface-Active Agents/pharmacology , Ultraviolet Rays , Thermal Conductivity
20.
Sci Total Environ ; 408(8): 1779-85, 2010 Mar 15.
Article in English | MEDLINE | ID: mdl-20153019

ABSTRACT

Industrial wastes have a substantial impact on coastal environments. Therefore, to evaluate the impact of cooling water discharges from coastal power plants, we studied the kinetics of the degradative processes and the ecotoxicity of two antifouling products: (1) a classic antifouling product; sodium hypochlorite (NaClO) and (2) an alternative one; aliphatic amines (commercial under the registered trade mark Mexel432). To assess the persistence of both compounds the decay of sodium hypochlorite and the primary biodegradation rate of Mexel432 were determined in natural seawater at 20 degrees C. The results indicated a more rapid decay of NaClO than Mexel432. The degradation behavior of both chemicals was described following a logistic model, which permitted calculating kinetic parameters such as t(50) or t(90). The t(50) was 1h and 2d for NaClO and Mexel432, respectively. To evaluate the potential risks of the aforementioned treatments to marine organisms, the acute toxicity of both antifouling products was studied on the microalgae Isochrysis galbana and Dunaliella salina, and on the invertebrate Brachionus plicatilis, using growth inhibition and death tests as toxic response, respectively. For I. galbana, the 96-h EC(50) values were 2.91+/-0.15mg/L of NaClO and 4.55+/-0.11mg/L of Mexel432. D. salina showed values of 96-h EC(50) of 1.73+/-0.16mg/L of NaClO and 7.21+/-0.1mg/L of Mexel432. Brachionus plicatilis showed a 24-h LC(50) of 1.23+/-0.1mg/L of NaClO and 3.62+/-0.37mg/L of Mexel432. Acute toxicity was highly dependent on the chemical and species tested. NaClO presented more toxic effects than Mexel432, also B. plicatilis was the most sensitive species in both cases. The lowest NOECs obtained, 0.25mg/L for NaClO and 2.12mg/L for Mexel432, were similar to the theoretical residual concentrations of these biocides in cooling water discharges. Therefore, these discharges can cause undesirable negative effects upon the aquatic organisms present.


Subject(s)
Amines/toxicity , Biofouling/prevention & control , Ecotoxicology , Marine Biology , Models, Biological , Models, Chemical , Sodium Hypochlorite/toxicity , Surface-Active Agents/toxicity , Amines/chemistry , Amines/metabolism , Biodegradation, Environmental , Kinetics , Sodium Hypochlorite/chemistry , Sodium Hypochlorite/metabolism , Surface-Active Agents/chemistry , Surface-Active Agents/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...