Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Neurosci ; 17: 1152248, 2023.
Article in English | MEDLINE | ID: mdl-37066076

ABSTRACT

N-methyl D-aspartate receptor (NMDAR) hypofunction is a pathophysiological mechanism relevant for schizophrenia. Acute administration of the NMDAR antagonist phencyclidine (PCP) induces psychosis in patients and animals while subchronic PCP (sPCP) produces cognitive dysfunction for weeks. We investigated the neural correlates of memory and auditory impairments in mice treated with sPCP and the rescuing abilities of the atypical antipsychotic drug risperidone administered daily for two weeks. We recorded neural activities in the medial prefrontal cortex (mPFC) and the dorsal hippocampus (dHPC) during memory acquisition, short-term, and long-term memory in the novel object recognition test and during auditory processing and mismatch negativity (MMN) and examined the effects of sPCP and sPCP followed by risperidone. We found that the information about the familiar object and its short-term storage were associated with mPFC→dHPC high gamma connectivity (phase slope index) whereas long-term memory retrieval depended on dHPC→mPFC theta connectivity. sPCP impaired short-term and long-term memories, which were associated with increased theta power in the mPFC, decreased gamma power and theta-gamma coupling in the dHPC, and disrupted mPFC-dHPC connectivity. Risperidone rescued the memory deficits and partly restored hippocampal desynchronization but did not ameliorate mPFC and circuit connectivity alterations. sPCP also impaired auditory processing and its neural correlates (evoked potentials and MMN) in the mPFC, which were also partly rescued by risperidone. Our study suggests that the mPFC and the dHPC disconnect during NMDAR hypofunction, possibly underlying cognitive impairment in schizophrenia, and that risperidone targets this circuit to ameliorate cognitive abilities in patients.

2.
Int J Mol Sci ; 23(17)2022 Sep 04.
Article in English | MEDLINE | ID: mdl-36077512

ABSTRACT

Understanding the dopaminergic system is a priority in neurobiology and neuropharmacology. Dopamine receptors are involved in the modulation of fundamental physiological functions, and dysregulation of dopaminergic transmission is associated with major neurological disorders. However, the available tools to dissect the endogenous dopaminergic circuits have limited specificity, reversibility, resolution, or require genetic manipulation. Here, we introduce azodopa, a novel photoswitchable ligand that enables reversible spatiotemporal control of dopaminergic transmission. We demonstrate that azodopa activates D1-like receptors in vitro in a light-dependent manner. Moreover, it enables reversibly photocontrolling zebrafish motility on a timescale of seconds and allows separating the retinal component of dopaminergic neurotransmission. Azodopa increases the overall neural activity in the cortex of anesthetized mice and displays illumination-dependent activity in individual cells. Azodopa is the first photoswitchable dopamine agonist with demonstrated efficacy in wild-type animals and opens the way to remotely controlling dopaminergic neurotransmission for fundamental and therapeutic purposes.


Subject(s)
Animals, Wild , Zebrafish , Animals , Dopamine , Ligands , Mice , Synaptic Transmission
3.
Cereb Cortex ; 32(16): 3472-3487, 2022 08 03.
Article in English | MEDLINE | ID: mdl-34875009

ABSTRACT

Neural synchrony and functional connectivity are disrupted in schizophrenia. We investigated changes in prefrontal-hippocampal neural dynamics during psychosis-like states induced by the NMDAR antagonist phencyclidine and subsequent rescue by two atypical antipsychotic drugs (AAPDs), risperidone and clozapine, and the classical APD haloperidol. The psychotomimetic effects of phencyclidine were associated with prefrontal hypersynchronization, hippocampal desynchronization, and disrupted circuit connectivity. Phencyclidine boosted prefrontal oscillatory power at atypical bands within delta, gamma, and high frequency ranges, while irregular cross-frequency and spike-LFP coupling emerged. In the hippocampus, phencyclidine enhanced delta rhythms but suppressed theta oscillations, theta-gamma coupling, and theta-beta spike-LFP coupling. Baseline interregional theta-gamma coupling, theta phase coherence, and hippocampus-to-cortex theta signals were redirected to delta frequencies. Risperidone and clozapine, but not haloperidol, reduced phencyclidine-induced prefrontal and cortical-hippocampal hypersynchrony. None of the substances restored hippocampal and circuit desynchronization. These results suggest that AAPDs, but not typical APDs, target prefrontal-hippocampal pathways to elicit antipsychotic action. We investigated whether the affinity of AAPDs for serotonin receptors could explain their distinct effects. Serotonin 5-HT2AR antagonism by M100907 and 5-HT1AR agonism by 8-OH-DPAT reduced prefrontal hypersynchronization. Our results point to fundamentally different neural mechanisms underlying the action of atypical versus typical APDs with selective contribution of serotonin receptors.


Subject(s)
Antipsychotic Agents , Clozapine , Psychotic Disorders , Receptor, Serotonin, 5-HT1A , Receptor, Serotonin, 5-HT2A , Animals , Antipsychotic Agents/pharmacology , Clozapine/pharmacology , Haloperidol/pharmacology , Hippocampus/drug effects , Hippocampus/metabolism , Mice , Phencyclidine/pharmacology , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Psychotic Disorders/drug therapy , Psychotic Disorders/metabolism , Receptor, Serotonin, 5-HT1A/metabolism , Receptor, Serotonin, 5-HT2A/metabolism , Risperidone/pharmacology , Serotonin Antagonists/pharmacology
4.
Proc Natl Acad Sci U S A ; 117(21): 11788-11798, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32393630

ABSTRACT

Down syndrome (DS) is the most common form of intellectual disability. The cognitive alterations in DS are thought to depend on brain regions critical for learning and memory such as the prefrontal cortex (PFC) and the hippocampus (HPC). Neuroimaging studies suggest that increased brain connectivity correlates with lower intelligence quotients (IQ) in individuals with DS; however, its contribution to cognitive impairment is unresolved. We recorded neural activity in the PFC and HPC of the trisomic Ts65Dn mouse model of DS during quiet wakefulness, natural sleep, and the performance of a memory test. During rest, trisomic mice showed increased theta oscillations and cross-frequency coupling in the PFC and HPC while prefrontal-hippocampal synchronization was strengthened, suggesting hypersynchronous local and cross-regional processing. During sleep, slow waves were reduced, and gamma oscillations amplified in Ts65Dn mice, likely reflecting prolonged light sleep. Moreover, hippocampal sharp-wave ripples were disrupted, which may have further contributed to deficient memory consolidation. Memory performance in euploid mice correlated strongly with functional connectivity measures that indicated a hippocampal control over memory acquisition and retrieval at theta and gamma frequencies, respectively. By contrast, trisomic mice exhibited poor memory abilities and disordered prefrontal-hippocampal functional connectivity. Memory performance and key neurophysiological alterations were rescued after 1 month of chronic administration of a green tea extract containing epigallocatequin-3-gallate (EGCG), which improves executive function in young adults with DS and Ts65Dn mice. Our findings suggest that abnormal prefrontal-hippocampal circuit dynamics are candidate neural mechanisms for memory impairment in DS.


Subject(s)
Down Syndrome/physiopathology , Hippocampus/physiology , Prefrontal Cortex/physiology , Recognition, Psychology/physiology , Animals , Catechin/analogs & derivatives , Catechin/pharmacology , Disease Models, Animal , Executive Function/drug effects , Female , Hippocampus/drug effects , Male , Mice , Mice, Inbred C57BL , Nerve Net/drug effects , Nerve Net/physiology , Neuroprotective Agents/pharmacology , Prefrontal Cortex/drug effects , Recognition, Psychology/drug effects
5.
Front Pharmacol ; 11: 583260, 2020.
Article in English | MEDLINE | ID: mdl-33519443

ABSTRACT

The effect of immunosuppressant treatments on the incidence of coronavirus disease (COVID-19) remains largely unknown. We studied the association between the pre-exposure to disease-modifying antirheumatic drugs (DMARDs) that decrease immunological responses and the incidence of COVID-19 to explore the possible effects of these treatments in early manifestations of the disease. For this purpose, we performed a cross-sectional study including 2,494 patients with immunomediated inflammatory diseases (IMIDs) recruited at the outpatient Rheumatology, Dermatology and Gastroenterology services of Hospital del Mar. The primary outcome was the clinical diagnosis of COVID-19 performed by a physician at the hospital or at the primary care center, from the March 1-29, 2020. Multivariable Poisson regression models were fitted to estimate COVID-19 relative risk (RR) adjusted by comorbidities. We revealed that biological (RR = 0.46, CI 95% = 0.31-0.67) and synthetic (RR = 0.62, CI 95% = 0.43-0.91) DMARDs used in IMIDs diminished the incidence of COVID-19. Striking sex differences were revealed with anti-TNFα compounds (RR = 0.50, CI 95% = 0.33-0.75) with higher effects in women (RR = 0.33, CI 95% = 0.17-0.647). Treatment with low glucocorticoid doses also revealed sex differences decreasing the incidence of COVID-19 predominantly in women (RR = 0.72, CI 95% = 0.42-1.22). Our results report a decreased incidence of COVID-19 in patients receiving specific DMARDs with different immunodepressor mechanisms with striking sex differences. These results underline the interest of repurposing specific DMARDs for the possibility of minimizing the severity of disease progression in the early stages of COVID-19.

6.
Neuropharmacology ; 158: 107743, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31430459

ABSTRACT

Atypical antipsychotic drugs (APDs) used to treat positive and negative symptoms in schizophrenia block serotonin receptors 5-HT2AR and dopamine receptors D2R and stimulate 5-HT1AR directly or indirectly. However, the exact cellular mechanisms mediating their therapeutic actions remain unresolved. We recorded neural activity in the prefrontal cortex (PFC) and hippocampus (HPC) of freely-moving mice before and after acute administration of 5-HT1AR, 5-HT2AR and D2R selective agonists and antagonists and atypical APD risperidone. We then investigated the contribution of the three receptors to the actions of risperidone on brain activity via statistical modeling and pharmacological reversal (risperidone + 5-HT1AR antagonist WAY-100635, risperidone + 5-HT2A/2CR agonist DOI, risperidone + D2R agonist quinpirole). Risperidone, 5-HT1AR agonism with 8-OH-DPAT, 5-HT2AR antagonism with M100907, and D2R antagonism with haloperidol reduced locomotor activity of mice that correlated with a suppression of neural spiking, power of theta and gamma oscillations in PFC and HPC, and reduction of PFC-HPC theta phase synchronization. By contrast, activation of 5-HT2AR with DOI enhanced high-gamma oscillations in PFC and PFC-HPC high gamma functional connectivity, likely related to its hallucinogenic effects. Together, power changes, regression modeling and pharmacological reversals suggest an important role of 5-HT1AR agonism and 5-HT2AR antagonism in risperidone-induced alterations of delta, beta and gamma oscillations, while D2R antagonism may contribute to risperidone-mediated changes in delta oscillations. This study provides novel insight into the neural mechanisms for widely prescribed psychiatric medication targeting the serotonin and dopamine systems in two regions involved in the pathophysiology of schizophrenia.


Subject(s)
Antipsychotic Agents/pharmacology , Hippocampus/drug effects , Locomotion/drug effects , Prefrontal Cortex/drug effects , Receptor, Serotonin, 5-HT1A/drug effects , Receptor, Serotonin, 5-HT2A/drug effects , Receptors, Dopamine D2/drug effects , Risperidone/pharmacology , 8-Hydroxy-2-(di-n-propylamino)tetralin/pharmacology , Amphetamines/pharmacology , Animals , Brain Waves/drug effects , Cortical Synchronization/drug effects , Dopamine Agonists/pharmacology , Dopamine Antagonists/pharmacology , Electroencephalography , Fluorobenzenes/pharmacology , Gamma Rhythm/drug effects , Haloperidol/pharmacology , Hippocampus/metabolism , Mice , Neural Pathways/drug effects , Piperazines/pharmacology , Piperidines/pharmacology , Prefrontal Cortex/metabolism , Pyridines/pharmacology , Quinpirole/pharmacology , Receptor, Serotonin, 5-HT1A/metabolism , Receptor, Serotonin, 5-HT2A/metabolism , Receptors, Dopamine D2/metabolism , Serotonin Antagonists/pharmacology , Serotonin Receptor Agonists/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...